4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Kinetic Analysis of Pairing and Strand Exchange Catalyzed by RecA : DETECTION BY FLUORESCENCE ENERGY TRANSFER

      , ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression.

          DMC1 is a new meiosis-specific yeast gene. Dmc1 protein is structurally similar to bacterial RecA proteins. dmc1 mutants are defective in reciprocal recombination, accumulate double-strand break (DSB) recombination intermediates, fail to form normal synaptonemal complex (SC), and arrest late in meiotic prophase. dmc1 phenotypes are consistent with a functional relationship between Dmc1 and RecA, and thus eukaryotic and prokaryotic mechanisms for homology recognition and strand exchange may be related. dmc1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation. dmc1 mutations confer prophase arrest. Additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism. DMC1 is homologous to yeast's RAD51 gene, supporting the view that mitotic DSB repair has been recruited for use in meiotic chromosome metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein.

            The RAD51 gene of S. cerevisiae is involved in mitotic recombination and repair of DNA damage and also in meiosis. We show that the rad51 null mutant accumulates meiosis-specific double-strand breaks (DSBs) at a recombination hotspot and reduces the formation of physical recombinants. Rad51 protein shows structural similarity to RecA protein, the bacterial strand exchange protein. Furthermore, we have found that Rad51 protein is similar to RecA in its DNA binding properties and binds directly to Rad52 protein, which also plays a crucial role in recombination. These results suggest that the Rad51 protein, probably together with Rad52 protein, is involved in a step to convert DSBs to the next intermediate in recombination. Rad51 protein is also homologous to a meiosis-specific Dmc1 protein of S. cerevisiae.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Energy transfer: a spectroscopic ruler.

                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                June 06 1997
                June 06 1997
                June 06 1997
                June 06 1997
                : 272
                : 23
                : 14672-14682
                Article
                10.1074/jbc.272.23.14672
                e21ddebc-13be-44b1-a1e3-5ffaba024b19
                © 1997
                History

                Comments

                Comment on this article