9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Responses of a Pre-hospital Emergency Medical Service During Military Conflict Versus COVID-19: A Retrospective Comparative Cohort Study

      research-article
      , PhD, , MD, , MD, , MD, PhD
      Military Medicine
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Background

          Decreases in routine healthcare practices have been shown to occur during disasters. However, research regarding the impacts of natural disasters, pandemics, or military conflicts on emergency medical services (EMS) is scarce.

          Objectives

          This study assessed the impact of a military conflict versus the coronavirus disease 2019 (COVID-19) pandemic on a national EMS organization in terms of responses to overall daily emergencies, medical illnesses, motor vehicle collisions, and other injuries.

          Methods

          This retrospective comparative cohort study assessed daily routine emergency ambulance calls to Magen David Adom (MDA), Israel’s national EMS organization. This included overall emergency calls as well as those related to medical illnesses, motor vehicle collisions (MVCs), and other injuries. All data were obtained from the MDA command and control database. During the military conflict Operation Protective Edge (2014), the civilian population was subjected to intensive rocket attacks for 24 days, followed by 26 days of a progressive withdrawal of operations and then to a post-conflict period. During the first wave of the COVID-19 pandemic (March-April 2020), the population was subjected to 32 days of total lockdown, followed by 27 days of progressive relief of confinement, and then to a post-lockdown period.

          Results

          The total number of emergency calls in this study was 330,430. During the conflict, the mean number of daily calls decreased, followed by an increase during Relief and Post-Conflict with higher values in Post-Conflict than in Pre-Conflict. During the COVID-19 pandemic, there was a decrease in the mean daily number of calls during Lockdown. It remained low during Relief and increased during Post-Lockdown. However, it remained lower in Post-Lockdown than during Pre-Lockdown. Calls related to medical illnesses decreased during the conflict and during the lockdown. The post-conflict period was characterized by a similar baseline call magnitude but not during the post-lockdown period. Decreases in calls for MVC and other injuries were significant during the lockdown but not during the military conflict. Post-lockdown was accompanied by return to baseline call volumes for MVC, whereas calls for other injuries increased above baseline both after the lockdown and military conflict.

          Conclusion

          This study shows decreasing trends in routine daily calls for EMS during both Operation Protective Edge and COVID-19. However, different patterns of needs for EMS were evidenced for medical illnesses, MVC, or calls concerning other injuries. These results are instrumental for managing the operational demands of EMS during military conflicts and pandemics.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study

          Summary Background Since a national lockdown was introduced across the UK in March, 2020, in response to the COVID-19 pandemic, cancer screening has been suspended, routine diagnostic work deferred, and only urgent symptomatic cases prioritised for diagnostic intervention. In this study, we estimated the impact of delays in diagnosis on cancer survival outcomes in four major tumour types. Methods In this national population-based modelling study, we used linked English National Health Service (NHS) cancer registration and hospital administrative datasets for patients aged 15–84 years, diagnosed with breast, colorectal, and oesophageal cancer between Jan 1, 2010, and Dec 31, 2010, with follow-up data until Dec 31, 2014, and diagnosed with lung cancer between Jan 1, 2012, and Dec 31, 2012, with follow-up data until Dec 31, 2015. We use a routes-to-diagnosis framework to estimate the impact of diagnostic delays over a 12-month period from the commencement of physical distancing measures, on March 16, 2020, up to 1, 3, and 5 years after diagnosis. To model the subsequent impact of diagnostic delays on survival, we reallocated patients who were on screening and routine referral pathways to urgent and emergency pathways that are associated with more advanced stage of disease at diagnosis. We considered three reallocation scenarios representing the best to worst case scenarios and reflect actual changes in the diagnostic pathway being seen in the NHS, as of March 16, 2020, and estimated the impact on net survival at 1, 3, and 5 years after diagnosis to calculate the additional deaths that can be attributed to cancer, and the total years of life lost (YLLs) compared with pre-pandemic data. Findings We collected data for 32 583 patients with breast cancer, 24 975 with colorectal cancer, 6744 with oesophageal cancer, and 29 305 with lung cancer. Across the three different scenarios, compared with pre-pandemic figures, we estimate a 7·9–9·6% increase in the number of deaths due to breast cancer up to year 5 after diagnosis, corresponding to between 281 (95% CI 266–295) and 344 (329–358) additional deaths. For colorectal cancer, we estimate 1445 (1392–1591) to 1563 (1534–1592) additional deaths, a 15·3–16·6% increase; for lung cancer, 1235 (1220–1254) to 1372 (1343–1401) additional deaths, a 4·8–5·3% increase; and for oesophageal cancer, 330 (324–335) to 342 (336–348) additional deaths, 5·8–6·0% increase up to 5 years after diagnosis. For these four tumour types, these data correspond with 3291–3621 additional deaths across the scenarios within 5 years. The total additional YLLs across these cancers is estimated to be 59 204–63 229 years. Interpretation Substantial increases in the number of avoidable cancer deaths in England are to be expected as a result of diagnostic delays due to the COVID-19 pandemic in the UK. Urgent policy interventions are necessary, particularly the need to manage the backlog within routine diagnostic services to mitigate the expected impact of the COVID-19 pandemic on patients with cancer. Funding UK Research and Innovation Economic and Social Research Council.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: the pandemic response causes cardiac collateral damage

            We conducted a nationwide retrospective survey on the impact of COVID-19 on the diagnosis and treatment of acute cornary syndrome (ACS) from 2 to 29 March in Austria. Of the 19 public primary percutaneous coronary (PCI) centres contacted, 17 (90%) provided the number of admitted patients. During the study period, we observed a significant decline in the number of patients admitted to hospital due to ACS (Figure 1 ). Comparing the first and last calendar week, there was a relative reduction of 39.4% in admissions for ACS. In detail, from calendar week 10 to calendar week 13, the number of ST-segment elevation myocardial infarction (STEMI) patients admitted to all hospitals was 94, 101, 89, and 70, respectively. The number of non-STEMI patients declined even more markedly from 132 to 110, to 62, and to 67. Figure 1 Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19. The absolute numbers of all ACS (blue bars), STEMI (orange bars), and NSTEMI (grey bars) admissions in Austria from calendar week 10 to calendar week 13 are shown. Abbreviations: STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction. The main finding of our retrospective observational study is an unexpected major decline in hospital admissions and thus treatment for all subtypes of ACS with the beginning of the COVID-19 outbreak in Austria and subsequent large-scale public health measures such as social distancing, self-isolation, and quarantining. Several factors might explain this important observation. The rigorous public health measures, which are undoubtedly critical for controlling the COVID-19 pandemic, may unintentionally affect established integrated care systems. Amongst others, patient-related factors could mean that infarct-related symptoms such as chest discomfort and dyspnoea could be misinterpreted as being related to an acute respiratory infection. Moreover, the strict instructions to stay at home as well as the fear of infection in a medical facility may have further prevented patients with an ACS from going to a hospital. Irrespective of the causes, the lower rate of admitted and therefore treated patients with ACS is worrisome and we are concerned that this might be accompanied by a substantial increase in early and late infarct-related morbidity and mortality. Our study does not provide data on mortality; however, considering the annual incidence of ACS in Austria (200/100 000/year = 17 600/year in 8.8 million habitants) 1 and taking into consideration sudden cardiac deaths and silent infarctions (one-third), there will remain ∼1000 ACS cases a month. The difference between the assumed number of ACS patients and the observed number in our study, i.e. 725 ACS patients in calendar weeks 10–13 is 275. According to these assumptions, 275 patients were not treated in March 2020. Based on data showing that the cardiovascular mortality of untreated ACS patients might be as high as 40% (as it was in the 1950s), 2 we can theoretically estimate 110 ACS deaths during this time frame. The number of deaths associated with this unintentional undersupply of guideline-directed ACS management is very alarming, particularly when considering that the official number of COVID-related deaths in Austria was 86 on 29 March. In conclusion, it seems likely that the COVID-19 outbreak is associated with a significantly lower rate of hospital admissions and thus, albeit unintended, treatment of ACS patients, which is most likely explained by several patient- and system-related factors. Every effort should be undertaken by the cardiology community to minimize the possible cardiac collateral damage caused by COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed access or provision of care in Italy resulting from fear of COVID-19

              During Italy's national lockdown for coronavirus disease 2019 (COVID-19), official hospital statistics in the period March 1–27, 2020, show substantial decreases—ranging from 73% to 88%—in paediatric emergency department visits compared with the same time period in 2019 and 2018 (figure ). Similarly, family paediatricians widely report a considerable reduction in clinic visits, although this is difficult to measure precisely. Figure Visits to paediatric emergency departments across five hospitals in Italy, March 1–27, 2020, compared with the same period in 2018 and 2019 Data are official hospital statistics (courtesy of the authors). Schools and sports activities have been closed since March 1 in Italy, so it is understandable that the numbers of acute infections and traumas among children are lower than usual. In addition, relatively few cases of COVID-19 among children have been reported. 1 As of April 2, the 1624 cases in the paediatric population ( 39°C) and the other presented with severe anaemia (haemoglobin 4·2 mg/dL) and respiratory distress after emergency department access was delayed. One of these patients died several days after hospital admission. One child presented with long-lasting convulsions after three previous episodes of convulsions had been treated at home without medical assistance; the patient was eventually diagnosed with bacterial pneumonia. A 3-year-old girl was admitted to hospital after 6 days at home with very high fever (>39°C), with a sepsis secondary to a pyelonephritis. A neonate was kept home despite vomiting for several days because of hypertrophic pyloric stenosis and arrived in the emergency department in hypovolaemic shock. Another child, aged 2 years, had been vomiting for several days and unable to eat before presenting with severe hypoglycaemia. One child arriving in the emergency department having been unable to pass faeces for more than a week was diagnosed with an abdominal mass of 15 cm diameter, later diagnosed as Wilm's tumour; the diagnosis by telephone from his paediatrician had been functional constipation. An adolescent with cerebral palsy and severe malnutrition got in touch with the hospital after 10 days of fever at home with increased oxygen needs, and died in the ambulance on the way to the hospital. The precise cause of fever and death was not ascertained but the adolescent was negative for COVID-19 infection. Another child with cerebral palsy, tracheotomy, and enteral nutrition died on route to the hospital after 3 days of bloody stools. A child with Mowat Wilson syndrome, in dialysis for chronic renal insufficiency, arrived at the hospital after 3 days of being “less active than usual” with capillary refill time of 4 s, heart rate of 50 beats per min, oxygen saturation level not detectable, mixed acidosis, and creatine 4 mg/dL; the child died after 4 days in the ICU. Of this small series of 12 cases, half of the children were admitted to an ICU and four died. In all cases, parents reported avoiding accessing hospital because of fear of infection with SARS-CoV-2. Furthermore, in five cases, the family had contacted health services before accessing care, but their health provider was unavailable because of the COVID-19 epidemic, or hospital access was discouraged because of the possible risk of infection. All cases were either negative for SARS-CoV-2 or had a clinical presentation (eg, diabetes) that did not justify a diagnostic test according to the national criteria. Notably, no death occurred in the same hospitals during the same period in 2019, and the total yearly number of paediatric deaths in these hospitals ranges from zero to three. These cases are clearly a small sample compared with the overall number of paediatric visits recorded in the five hospitals during this week (12 [2%] of 502). However, since delay in access to care was not monitored systematically, this small case series might underestimate the problem. We believe that further monitoring of access to routine clinical care is needed during the COVID-19 pandemic. There is a need to prevent delays in accessing hospital care and to increase provision of high-quality coordinated care by health-care providers. Both of these aspects should be considered as part of the overall public health impact of the COVID-19 pandemic, as evident in other epidemics,3, 4 and must be adequately monitored. Both the general population and health-care workers need clear guidance and information. Specifically, parents should be made fully aware that the risks of delayed access to hospital care for emergency conditions can be much higher than those posed by COVID-19. Specific duties and obligations of different types of health-care professionals should be clearly defined, taking into consideration the risk level of the working environment, the health-care worker's specialty, the probable harms and benefits of treatment, and competing obligations deriving from workers' multiple roles.4, 5
                Bookmark

                Author and article information

                Contributors
                Journal
                Mil Med
                Mil Med
                milmed
                Military Medicine
                Oxford University Press (US )
                0026-4075
                1930-613X
                26 October 2021
                26 October 2021
                : usab437
                Affiliations
                departmentCommunity Division, Magen David Adom , Or-Yehuda 6021805, Israel
                departmentDepartment of Emergency Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva 8410501, Israel
                departmentCommunity Division, Magen David Adom , Or-Yehuda 6021805, Israel
                departmentDepartment of Emergency Medicine, Shaare Zedek Medical Center , Jerusalem 9103102, Israel
                departmentFaculty of Medicine, Hebrew University of Jerusalem , Jerusalem 9112102, Israel
                departmentCommunity Division, Magen David Adom , Or-Yehuda 6021805, Israel
                Author notes
                [║]

                Equal first contributor.

                Author information
                https://orcid.org/0000-0002-8380-0219
                https://orcid.org/0000-0001-8662-3273
                https://orcid.org/0000-0003-1708-5058
                Article
                usab437
                10.1093/milmed/usab437
                8574320
                34697626
                e268b515-4dc1-48ec-8a52-39c67b4ec1c6
                © The Association of Military Surgeons of the United States 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

                This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model ( https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 02 August 2021
                : 01 October 2021
                : 17 October 2021
                : 13 October 2021
                : 26 October 2021
                Page count
                Pages: 7
                Categories
                Feature Article and Original Research
                AcademicSubjects/MED00010
                Custom metadata
                PAP

                Comments

                Comment on this article