125
views
0
recommends
+1 Recommend
1 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          We previously developed two antibodies that bind to a cell surface protein, perlecan, overexpressed in triple-negative breast cancer (TNBC). The goal of this study was to investigate these antibodies as targeting ligands for nanoparticle-mediated drug delivery.

          Methods:

          Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles were functionalized with antibodies using thiol–maleimide chemistry. Effect of antibody functionalization on therapeutic efficacy of drug-loaded nanoparticles was investigated using in vitro and in vivo models of TNBC.

          Results:

          The antibodies were covalently conjugated to nanoparticles without affecting antibody binding affinity or nanoparticle properties. Perlecan-targeted nanoparticles showed improved cell uptake, retention, cytotoxicity in vitro and enhanced tumor growth inhibition in vivo.

          Conclusion:

          The data presented here indicates that perlecan-targeted nanoparticles can improve tumor drug delivery to TNBC.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix proteoglycans: from molecular design to cellular function.

          R Iozzo (1998)
          The proteoglycan superfamily now contains more than 30 full-time molecules that fulfill a variety of biological functions. Proteoglycans act as tissue organizers, influence cell growth and the maturation of specialized tissues, play a role as biological filters and modulate growth-factor activities, regulate collagen fibrillogenesis and skin tensile strength, affect tumor cell growth and invasion, and influence corneal transparency and neurite outgrowth. Additional roles, derived from studies of mutant animals, indicate that certain proteoglycans are essential to life whereas others might be redundant. The review focuses on the most recent genetic and molecular biological studies of the matrix proteoglycans, broadly defined as proteoglycans secreted into the pericellular matrix. Special emphasis is placed on the molecular organization of the protein core, the utilization of protein modules, the gene structure and transcriptional control, and the functional roles of the various proteoglycans. When possible, proteoglycans have been grouped into distinct gene families and subfamilies offering a simplified nomenclature based on their protein core design. The structure-function relationship of some paradigmatic proteoglycans is discussed in depth and novel aspects of their biology are examined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.

            We describe evidence for a novel mechanism of monoclonal antibody (MAb)-directed nanoparticle (immunoliposome) targeting to solid tumors in vivo. Long-circulating immunoliposomes targeted to HER2 (ErbB2, Neu) were prepared by the conjugation of anti-HER2 MAb fragments (Fab' or single chain Fv) to liposome-grafted polyethylene glycol chains. MAb fragment conjugation did not affect the biodistribution or long-circulating properties of i.v.-administered liposomes. However, antibody-directed targeting also did not increase the tumor localization of immunoliposomes, as both targeted and nontargeted liposomes achieved similarly high levels (7-8% injected dose/g tumor tissue) of tumor tissue accumulation in HER2-overexpressing breast cancer xenografts (BT-474). Studies using colloidal gold-labeled liposomes showed the accumulation of anti-HER2 immunoliposomes within cancer cells, whereas matched nontargeted liposomes were located predominantly in extracellular stroma or within macrophages. A similar pattern of stromal accumulation without cancer cell internalization was observed for anti-HER2 immunoliposomes in non-HER2-overexpressing breast cancer xenografts (MCF-7). Flow cytometry of disaggregated tumors posttreatment with either liposomes or immunoliposomes showed up to 6-fold greater intracellular uptake in cancer cells due to targeting. Thus, in contrast to nontargeted liposomes, anti-HER2 immunoliposomes achieved intracellular drug delivery via MAb-mediated endocytosis, and this, rather than increased uptake in tumor tissue, was correlated with superior antitumor activity. Immunoliposomes capable of selective internalization in cancer cells in vivo may provide new opportunities for drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging.

              Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligands to the surface of nanoparticles leads to enhanced potency relative to nontargeted formulations. Here, we use positron emission tomography (PET) and bioluminescent imaging to quantify the in vivo biodistribution and function of nanoparticles formed with cyclodextrin-containing polycations and siRNA. Conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid to the 5' end of the siRNA molecules allows labeling with (64)Cu for PET imaging. Bioluminescent imaging of mice bearing luciferase-expressing Neuro2A s.c. tumors before and after PET imaging enables correlation of functional efficacy with biodistribution data. Although both nontargeted and transferrin-targeted siRNA nanoparticles exhibit similar biodistribution and tumor localization by PET, transferrin-targeted siRNA nanoparticles reduce tumor luciferase activity by approximately 50% relative to nontargeted siRNA nanoparticles 1 d after injection. Compartmental modeling is used to show that the primary advantage of targeted nanoparticles is associated with processes involved in cellular uptake in tumor cells rather than overall tumor localization. Optimization of internalization may therefore be key for the development of effective nanoparticle-based targeted therapeutics.
                Bookmark

                Author and article information

                Journal
                Future Drug Discov
                Future Drug Discov
                FDD
                Future Drug Discovery
                Newlands Press Ltd (London, UK )
                2631-3316
                01 July 2019
                July 2019
                01 July 2019
                : 1
                : 1
                : FDD8
                Affiliations
                [1 ]Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
                [2 ]Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
                Author notes
                [* ]Author for correspondence: Tel.: +1 612 624 0951; Fax: +1 612 626 2125; jpanyam@ 123456umn.edu
                Article
                10.4155/fdd-2019-0005
                6700713
                31448368
                e2bf7a7d-cccc-48a6-a2b6-f5e130dfe3b9
                © 2019 Jayanth Panyam

                This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License

                History
                : 18 January 2019
                : 07 May 2019
                : 01 July 2019
                Page count
                Pages: 12
                Categories
                Research Article

                antibody,perlecan,polymeric nanoparticles,targeted drug delivery,triple-negative breast cancer

                Comments

                Comment on this article