6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      On the accuracy of ARIMA based prediction of COVID-19 spread

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          COVID-19 was declared a global pandemic by the World Health Organization in March 2020, and has infected more than 4 million people worldwide with over 300,000 deaths by early May 2020. Many researchers around the world incorporated various prediction techniques such as Susceptible–Infected–Recovered model, Susceptible–Exposed–Infected–Recovered model, and Auto Regressive Integrated Moving Average model (ARIMA) to forecast the spread of this pandemic. The ARIMA technique was not heavily used in forecasting COVID-19 by researchers due to the claim that it is not suitable for use in complex and dynamic contexts. The aim of this study is to test how accurate the ARIMA best-fit model predictions were with the actual values reported after the entire time of the prediction had elapsed. We investigate and validate the accuracy of an ARIMA model over a relatively long period of time using Kuwait as a case study. We started by optimizing the parameters of our model to find a best-fit through examining auto-correlation function and partial auto correlation function charts, as well as different accuracy measures. We then used the best-fit model to forecast confirmed and recovered cases of COVID-19 throughout the different phases of Kuwait’s gradual preventive plan. The results show that despite the dynamic nature of the disease and constant revisions made by the Kuwaiti government, the actual values for most of the time period observed were well within bounds of our selected ARIMA model prediction at 95% confidence interval. Pearson’s correlation coefficient for the forecast points with the actual recorded data was found to be 0.996. This indicates that the two sets are highly correlated. The accuracy of the prediction provided by our ARIMA model is both appropriate and satisfactory.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov)

            The basic reproduction number of an infectious agent is the average number of infections one case can generate over the course of the infectious period, in a naïve, uninfected population. It is well-known that the estimation of this number may vary due to several methodological issues, including different assumptions and choice of parameters, utilized models, used datasets and estimation period. With the spreading of the novel coronavirus (2019-nCoV) infection, the reproduction number has been found to vary, reflecting the dynamics of transmission of the coronavirus outbreak as well as the case reporting rate. Due to significant variations in the control strategies, which have been changing over time, and thanks to the introduction of detection technologies that have been rapidly improved, enabling to shorten the time from infection/symptoms onset to diagnosis, leading to faster confirmation of the new coronavirus cases, our previous estimations on the transmission risk of the 2019-nCoV need to be revised. By using time-dependent contact and diagnose rates, we refit our previously proposed dynamics transmission model to the data available until January 29th, 2020 and re-estimated the effective daily reproduction ratio that better quantifies the evolution of the interventions. We estimated when the effective daily reproduction ratio has fallen below 1 and when the epidemics will peak. Our updated findings suggest that the best measure is persistent and strict self-isolation. The epidemics will continue to grow, and can peak soon with the peak time depending highly on the public health interventions practically implemented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Automatic Time Series Forecasting: TheforecastPackage forR

                Bookmark

                Author and article information

                Journal
                Results Phys
                Results Phys
                Results in Physics
                The Author(s). Published by Elsevier B.V.
                2211-3797
                15 July 2021
                August 2021
                15 July 2021
                : 27
                : 104509
                Affiliations
                [a ]Computer Science & Information Systems Department, Public Authority for Applied Education & Training, Kuwait
                [b ]Computer Science Department, Tuskegee University, AL, USA
                [c ]Information Systems and Operations Management Department, Kuwait University, Kuwait
                [d ]Computer Engineering Department, Kuwait University, Kuwait
                Author notes
                [* ]Correspondence to: P.O. box 5969, Safat, 13060, Kuwait.
                Article
                S2211-3797(21)00619-7 104509
                10.1016/j.rinp.2021.104509
                8279942
                34307005
                e33e2888-5817-4cdb-8671-f2417afa23f3
                © 2021 The Author(s)

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 4 June 2021
                : 25 June 2021
                : 27 June 2021
                Categories
                Article

                covid-19,arima model,kuwait,prediction performance,forecasting model,sars-cov2,statistical modeling,mathematical modeling,pandemic

                Comments

                Comment on this article