146
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The interactive brain hypothesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enactive approaches foreground the role of interpersonal interaction in explanations of social understanding. This motivates, in combination with a recent interest in neuroscientific studies involving actual interactions, the question of how interactive processes relate to neural mechanisms involved in social understanding. We introduce the Interactive Brain Hypothesis (IBH) in order to help map the spectrum of possible relations between social interaction and neural processes. The hypothesis states that interactive experience and skills play enabling roles in both the development and current function of social brain mechanisms, even in cases where social understanding happens in the absence of immediate interaction. We examine the plausibility of this hypothesis against developmental and neurobiological evidence and contrast it with the widespread assumption that mindreading is crucial to all social cognition. We describe the elements of social interaction that bear most directly on this hypothesis and discuss the empirical possibilities open to social neuroscience. We propose that the link between coordination dynamics and social understanding can be best grasped by studying transitions between states of coordination. These transitions form part of the self-organization of interaction processes that characterize the dynamics of social engagement. The patterns and synergies of this self-organization help explain how individuals understand each other. Various possibilities for role-taking emerge during interaction, determining a spectrum of participation. This view contrasts sharply with the observational stance that has guided research in social neuroscience until recently. We also introduce the concept of readiness to interact to describe the practices and dispositions that are summoned in situations of social significance (even if not interactive). This latter idea links interactive factors to more classical observational scenarios.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inter-Brain Synchronization during Social Interaction

          During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The eye contact effect: mechanisms and development.

            The 'eye contact effect' is the phenomenon that perceived eye contact with another human face modulates certain aspects of the concurrent and/or immediately following cognitive processing. In addition, functional imaging studies in adults have revealed that eye contact can modulate activity in structures in the social brain network, and developmental studies show evidence for preferential orienting towards, and processing of, faces with direct gaze from early in life. We review different theories of the eye contact effect and advance a 'fast-track modulator' model. Specifically, we hypothesize that perceived eye contact is initially detected by a subcortical route, which then modulates the activation of the social brain as it processes the accompanying detailed sensory information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seeing or doing? Influence of visual and motor familiarity in action observation.

              The human brain contains specialized circuits for observing and understanding actions. Previous studies have not distinguished whether this "mirror system" uses specialized motor representations or general processes of visual inference and knowledge to understand observed actions. We report the first neuroimaging study to distinguish between these alternatives. Purely motoric influences on perception have been shown behaviorally, but their neural bases are unknown. We used fMRI to reveal the neural bases of motor influences on action observation. We controlled for visual and knowledge effects by studying expert dancers. Some ballet moves are performed by only one gender. However, male and female dancers train together and have equal visual familiarity with all moves. Male and female dancers viewed videos of gender-specific male and female ballet moves. We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from their own motor repertoire, compared to opposite-gender moves that they frequently saw but did not perform. Our results show that mirror circuits have a purely motor response over and above visual representations of action. We understand actions not only by visual recognition, but also motorically. In addition, we confirm that the cerebellum is part of the action observation network.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                07 June 2012
                2012
                : 6
                : 163
                Affiliations
                [1] 1simpleDepartment of Logic and Philosophy of Science, Ikerbasque - Basque Science Foundation, San Sebastian Bizkaia, Spain
                [2] 2simpleDepartment of Logic and Philosophy of Science, University of the Basque Country (UPV/EHU), San Sebastian Bizkaia, Spain
                [3] 3simpleCentre for Computational Neuroscience and Robotics, University of Sussex Brighton, UK
                Author notes

                Edited by: Ulrich Pfeiffer, University Hospital Cologne, Germany

                Reviewed by: Scott Kelso, Florida Atlantic University, USA; Evan Thompson, University of Toronto, Canada

                *Correspondence: Ezequiel Di Paolo, Department of Logic and Philosophy of Science, Ikerbasque - Basque Science Foundation, Av De Tolosa 70, 20018, San Sebastian, Bizkaia, Spain. e-mail: ezequiel@ 123456sussex.ac.uk
                Article
                10.3389/fnhum.2012.00163
                3369190
                22701412
                e34b1384-d5e9-493a-a096-fcffcc76b526
                Copyright © 2012 Di Paolo and De Jaegher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 27 February 2012
                : 22 May 2012
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 145, Pages: 16, Words: 16608
                Categories
                Neuroscience
                Hypothesis and Theory Article

                Neurosciences
                enaction,interactive brain hypothesis,participatory sense-making,autonomy,transitions in coordination,readiness to interact,social interaction

                Comments

                Comment on this article