7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in \(\text {AdS}_5\) AdS 5 spacetime

      ,
      The European Physical Journal C
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Building an AdS/CFT superconductor

          We show that a simple gravitational theory can provide a holographically dual description of a superconductor. There is a critical temperature, below which a charged condensate forms via a second order phase transition and the (DC) conductivity becomes infinite. The frequency dependent conductivity develops a gap determined by the condensate. We find evidence that the condensate consists of pairs of quasiparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Holography, Thermodynamics and Fluctuations of Charged AdS Black Holes

            , , (2010)
            The physical properties of Reissner-Nordstrom black holes in (n+1)-dimensional anti-de Sitter spacetime are related, by a holographic map, to the physics of a class of n-dimensional field theories coupled to a background global current. Motivated by that fact, and the recent observations of the striking similarity between the thermodynamic phase structure of these black holes (in the canonical ensemble) and that of the van der Waals-Maxwell liquid-gas system, we explore the physics in more detail. We study fluctuations and stability within the equilibrium thermodynamics, examining the specific heats and electrical permittivity of the holes, and consider the analogue of the Clayperon equation at the phase boundaries. Consequently, we refine the phase diagrams in the canonical and grand canonical ensembles. We study the interesting physics in the neighbourhood of the critical point in the canonical ensemble. There is a second order phase transition found there, and that region is characterized by a Landau-Ginzburg model with A_3 potential. The holographically dual field theories provide the description of the microscopic degrees of freedom which underlie all of the thermodynamics, as can be seen by examining the form of the microscopic fluctuations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gauss-Bonnet Black Holes in AdS Spaces

              We study thermodynamic properties and phase structures of topological black holes in Einstein theory with a Gauss-Bonnet term and a negative cosmological constant. The event horizon of these topological black holes can be a hypersurface with positive, zero or negative constant curvature. When the horizon is a zero curvature hypersurface, the thermodynamic properties of black holes are completely the same as those of black holes without the Gauss-Bonnet term, although the two black hole solutions are quite different. When the horizon is a negative constant curvature hypersurface, the thermodynamic properties of the Gauss-Bonnet black holes are qualitatively similar to those of black holes without the Gauss-Bonnet term. When the event horizon is a hypersurface with positive constant curvature, we find that the thermodynamic properties and phase structures of black holes drastically depend on the spacetime dimension \(d\) and the coefficient of the Gauss-Bonnet term: when \(d\ge 6\), the properties of black hole are also qualitatively similar to the case without the Gauss-Bonnet term, but when \(d=5\), a new phase of locally stable small black hole occurs under a critical value of the Gauss-Bonnet coefficient, and beyond the critical value, the black holes are always thermodynamically stable. However, the locally stable small black hole is not globally preferred, instead a thermal anti-de Sitter space is globally preferred. We find that there is a minimal horizon radius, below which the Hawking-Page phase transition will not occur since for these black holes the thermal anti de Sitter space is always globally preferred.
                Bookmark

                Author and article information

                Journal
                The European Physical Journal C
                Eur. Phys. J. C
                Springer Nature
                1434-6044
                1434-6052
                June 2017
                June 2017
                : 77
                : 6
                Article
                10.1140/epjc/s10052-017-4978-3
                e36d7a5b-c39c-4908-b94d-4235dc90e924
                © 2017
                History

                Comments

                Comment on this article