19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxygen deficiency after myocardial infarction (MI) leads to massive cardiac cell death. Protection of cardiac cells and promotion of cardiac repair are key therapeutic goals. These goals may be achieved by re-introducing oxygen into the infarcted area. Yet current systemic oxygen delivery approaches cannot efficiently diffuse oxygen into the infarcted area that has extremely low blood flow. In this work, we developed a new oxygen delivery system that can be delivered specifically to the infarcted tissue, and continuously release oxygen to protect the cardiac cells. The system was based on a thermosensitive, injectable and fast gelation hydrogel, and oxygen releasing microspheres. The fast gelation hydrogel was used to increase microsphere retention in the heart tissue. The system was able to continuously release oxygen for 4 weeks. The released oxygen significantly increased survival of cardiac cells under the hypoxic condition (1% O 2) mimicking that of the infarcted hearts. It also reduced myofibroblast formation under hypoxic condition (1% O 2). After implanting into infarcted hearts for 4 weeks, the released oxygen significantly augmented cell survival, decreased macrophage density, reduced collagen deposition and myofibroblast density, and stimulated tissue angiogenesis, leading to a significant increase in cardiac function.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections

          Sirius Red, a strong anionic dye, stains collagen by reacting, via its sulphonic acid groups, with basic groups present in the collagen molecule. The elongated dye molecules are attached to the collagen fibre in such a way that their long axes are parallel. This parallel relationship between dye and collagen results in an enhanced birefringency. Examination of tissue sections from 15 species of vertebrates suggests that staining with Sirius Red, when combined with enhancement of birefringency, may be considered specific for collagen. An improved and modified method of staining with Sirius Red is presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperbaric oxygen: its mechanisms and efficacy.

            This article outlines therapeutic mechanisms of hyperbaric oxygen therapy and reviews data on its efficacy for clinical problems seen by plastic and reconstructive surgeons. The information in this review was obtained from the peer-reviewed medical literature. Principal mechanisms of hyperbaric oxygen are based on intracellular generation of reactive species of oxygen and nitrogen. Reactive species are recognized to play a central role in cell signal transduction cascades, and the discussion will focus on these pathways. Systematic reviews and randomized clinical trials support clinical use of hyperbaric oxygen for refractory diabetic wound-healing and radiation injuries; treatment of compromised flaps and grafts and ischemia-reperfusion disorders is supported by animal studies and a small number of clinical trials, but further studies are warranted. Clinical and mechanistic data support use of hyperbaric oxygen for a variety of disorders. Further work is needed to clarify clinical utility for some disorders and to hone patient selection criteria to improve cost efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

              Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodeling. While MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application due to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP over-expression following a myocardial infarction (MI) significantly reduced MMP activity and attenuated adverse left ventricular remodeling in a porcine model of MI. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.
                Bookmark

                Author and article information

                Contributors
                guan.21@osu.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 January 2018
                22 January 2018
                2018
                : 8
                : 1371
                Affiliations
                [1 ]ISNI 0000 0001 2285 7943, GRID grid.261331.4, Department of Materials Science and Engineering, , The Ohio State University, ; Columbus, OH 43210 USA
                [2 ]ISNI 0000 0001 2285 7943, GRID grid.261331.4, Davis Heart and Lung Research Institute, , The Ohio State University, ; Columbus, OH 43210 USA
                [3 ]ISNI 0000 0001 2285 7943, GRID grid.261331.4, Department of Surgery, , The Ohio State University, ; Columbus, OH 43210 USA
                Article
                19906
                10.1038/s41598-018-19906-w
                5778078
                29358595
                e41f50da-2273-4e01-b190-d89ee83d1ffb
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 November 2017
                : 10 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article