9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of [EMIM]AcO and three DESs was compared in lignocellulose pretreatment with focus on cellulase stability, effects on lignocellulose and enzymatic hydrolysis of pretreated lignocellulose in both buffer and in solutions of ionic liquid or DES.

          Abstract

          Certain ionic liquids (ILs) are well-known pretreatment chemicals for lignocellulosic substrates prior to enzymatic total hydrolysis. Deep eutectic solvents (DESs) are closely related to ILs in many properties, but are easier and on occasion cheaper to synthesize and have been claimed to be less inactivating to enzymes used in the hydrolysis, and less toxic for the environment and to micro-organisms used in fermentation. The use of DESs as lignocellulose pretreatment chemicals has not been studied to a similar extent as the use of ILs. In this study, the stability of three Trichoderma reesei cellulases (the endoglucanases Cel5A and Cel7B and the cellobiohydrolase Cel7A) and one T. reesei xylanase (Xyn11) was compared in concentrated solutions (85% w/w) of three DESs (choline chloride : boric acid in molar ratio 5 : 2, choline chloride : glycerol 1 : 1 and betaine : glycerol 1 : 1) and 1-ethyl-3-methylimidazolium acetate ([EMIM]AcO), a powerful lignocellulose-dissolving IL. The pretreatment efficiency of these chemicals was further compared in a mild pretreatment (90% w/w DES or [EMIM]AcO, 80 °C, 24 h, 5% (w/w) lignocellulose consistency) of four different substrates; microcrystalline cellulose, eucalyptus dissolving pulp, shredded wheat straw and spruce saw dust. After pretreatment, the enzymatic digestibility of the pretreated substrates was evaluated in the enzymatic total hydrolysis in three different setups, including hydrolysis of the washed pretreated substrates in buffer, and of the pretreated substrates in solutions containing 30% (w/w) and 80% (w/w) of DES or [EMIM]AcO. The stability analysis identified glycerol-containing DESs to be highly stabilizing for the cellulases, but their pretreatment efficiency was limited. [EMIM]AcO had a high pretreatment efficiency, but was highly inactivating for the used cellulases. The presence of DES or [EMIM]AcO led in all cases to decreased enzymatic hydrolysis yields. Thus, good enzymatic stability in a certain DES does not directly implicate good performance in the hydrolysis of solid lignocellulosic substrates in that DES.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.

          Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject. 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Deconstruction of lignocellulosic biomass with ionic liquids

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

              Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2016
                2016
                : 6
                : 72
                : 68100-68110
                Affiliations
                [1 ]VTT Technical Research Centre of Finland Ltd
                [2 ]Espoo
                [3 ]Finland
                Article
                10.1039/C6RA11719H
                e438092e-26c3-4156-923c-95b057804469
                © 2016
                History

                Comments

                Comment on this article