18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo

      research-article
      * , , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.

          Materials and Methods

          Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset). We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.

          Results

          The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.

          Conclusion

          The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of stimulated echo correction to multicomponent T2 analysis.

          We propose a multicomponent fitting algorithm for multiecho T(2) data which allows for correction of T(2) distributions in the presence of stimulated echoes. Tracking the population of spins in many coherence pathways via the iterated method of the Extended Phase Graph algorithm allows for accurate quantification of echo magnitudes. The resulting decay curves allow for correction of errors due to nonideal refocusing pulses as a result of inhomogeneities in the B(1) transmit field. Non-Negative Least Squares fitting is used to quantify the magnitude of T(2) components at various T(2) values. This method, allowing calculation of the T(2) distribution with simultaneous extraction of the refocusing pulse flip angle, requires no change to image acquisition procedures and no extra data input. Validation by means of both simulations and in vivo data shows excellent interscan reproducibility while vastly improving the accuracy of extracted T(2) parameters in voxels where poor B(1) homogeneity leads to refocusing pulse flip angles significantly less than 180°. Most notably, myelin water fraction values in these regions are found to have increased consistency and accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artifacts in 3-T MRI: physical background and reduction strategies.

            Magnetic resonance imaging (MRI) at a field-strength of 3 T has become more and more frequently used in recent years. In an increasing number of radiological sites, 3-T MRI now starts to play the same role for clinical imaging that was occupied by 1.5-T systems in the past. Because of physical limitations related to the higher field strength and because of protocols transferred from 1.5-T MRI that are not yet fully optimized for 3 T, radiologists and technicians working at these systems are relatively often confronted with image artifacts related to 3-T MRI. The purpose of this review article is to present the most relevant artifacts that arise in 3-T MRI, to provide some physical background on the formation of artifacts, and to suggest strategies to reduce or avoid these artifacts. The discussed artifacts are classified and ordered according to the physical mechanism or property of the MRI system responsible for their occurrence: artifacts caused by B0 inhomogeneity and susceptibility effects, B1 inhomogeneity and wavelength effects, chemical-shift effects, blood flow and magnetohydrodynamics, and artifacts related to SNR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T.

              To determine if age and early symptomatic degeneration alter the spatial dependency of cartilage T2. In 25 asymptomatic volunteers and six volunteers with symptoms of patellar chondromalacia, quantitative T2 maps of patellar cartilage were obtained with a multiecho, spin-echo magnetic resonance imaging sequence at 3.0 T. Spatial variation in T2 was evaluated as a function of participant age and symptoms. All asymptomatic volunteers demonstrated a continuous increase in T2 from the radial zone to the articular surface. In the population aged 46-60 years compared with younger volunteers, there was a statistically significant (P < .05) increase in T2 of the transitional zone. In symptomatic volunteers, the increase in T2 was larger in magnitude and focal in distribution. In five of the six symptomatic volunteers, the increase in T2 was greater than the 95% prediction interval determined from data in the corresponding age-matched asymptomatic population. Aging is associated with an asymptomatic increase in T2 of the transitional zone of articular cartilage. Preliminary results indicate this diffuse increase in T2 in senescent cartilage is different in appearance than the focally increased T2 observed in damaged articular cartilage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                17 December 2015
                2015
                : 10
                : 12
                : e0145255
                Affiliations
                [001]Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
                University of Chicago, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DM NR SH. Performed the experiments: DM NR. Analyzed the data: DM. Contributed reagents/materials/analysis tools: DM NR SH. Wrote the paper: DM NR MB.

                Article
                PONE-D-15-25716
                10.1371/journal.pone.0145255
                4683054
                26678918
                e446d474-e8f9-4781-a603-db9b96747e64
                © 2015 Milford et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 June 2015
                : 30 November 2015
                Page count
                Figures: 6, Tables: 4, Pages: 13
                Funding
                This research was supported by grants of the Deutsche Forschungsgemeinschaft (DFG, SFB 1118) and of the Dietmar-Hopp-Stiftung.
                Categories
                Research Article
                Custom metadata
                All relevant data are available within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article