16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up

      meeting-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Automated perimetry has become the mainstream for assessment of functional glaucomatous loss and progressive damage. Recent improvements with the Swedish interactive thresholding algorithm (SITA) strategy and the guided progression analysis (GPA) have further settled standard achromatic perimetry (SAP) as the preferred method for diagnosis and follow-up of functional loss. Although SAP is still considered the gold standard, function-specific perimetry may offer advantages for early diagnosis. Frequency doubling technology (FDT) and short-wavelength automated perimetry (SWAP) have been shown to be helpful, especially when SAP is normal and there is a suspicion of glaucoma. Studies using rarebit perimetry have also shown promising results. Studies have observed that each test identifies a different subset of eyes, and combining the tests may improve sensitivity. Nevertheless, the more sophisticated analyses do not reduce the importance of a correct interpretation of the test results.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators.

          (2000)
          To investigate the association between control of intraocular pressure after surgical intervention for glaucoma and visual field deterioration. In the Advanced Glaucoma Intervention Study, eyes were randomly assigned to one of two sequences of glaucoma surgery, one beginning with argon laser trabeculoplasty and the other trabeculectomy. In the present article we examine the relationship between intraocular pressure and progression of visual field damage over 6 or more years of follow-up. In the first analysis, designated Predictive Analysis, we categorize 738 eyes into three groups based on intraocular pressure determinations over the first three 6-month follow-up visits. In the second analysis, designated Associative Analysis, we categorize 586 eyes into four groups based on the percent of 6-month visits over the first 6 follow-up years in which eyes presented with intraocular pressure less than 18 mm Hg. The outcome measure in both analyses is change from baseline in follow-up visual field defect score (range, 0 to 20 units). In the Predictive Analysis, eyes with early average intraocular pressure greater than 17.5 mm Hg had an estimated worsening during subsequent follow-up that was 1 unit of visual field defect score greater than eyes with average intraocular pressure less than 14 mm Hg (P =.002). This amount of worsening was greater at 7 years (1.89 units; P <.001) than at 2 years (0.64 units; P =.071). In the Associative Analysis, eyes with 100% of visits with intraocular pressure less than 18 mm Hg over 6 years had mean changes from baseline in visual field defect score close to zero during follow-up, whereas eyes with less than 50% of visits with intraocular pressure less than 18 mm Hg had an estimated worsening over follow-up of 0.63 units of visual field defect score (P =.083). This amount of worsening was greater at 7 years (1.93 units; P <.001) than at 2 years (0.25 units; P =.572). In both analyses low intraocular pressure is associated with reduced progression of visual field defect, supporting evidence from earlier studies of a protective role for low intraocular pressure in visual field deterioration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.

            To compare the number of retinal ganglion cells (RGCs) topographically mapped with specific visual field threshold test data in the same eyes among glaucoma patients. Seventeen eyes of 13 persons with well-documented glaucoma histories and Humphrey threshold visual field tests (San Leandro, CA) were obtained from eye banks. RGC number was estimated by histologic counts of retinal sections and by counts of remaining axons in the optic nerves. The locations of the retinal samples corresponded to specific test points in the visual field. The data for glaucoma patients were compared with 17 eyes of 17 persons who were group matched for age, had no ocular history, and had normal eyes by histologic examination. The mean RGC loss for the entire retina averaged 10.2%, indicating that many eyes had early glaucoma damage. RGC body loss averaged 35.7% in eyes with corrected pattern SD probability less than 0.5%. When upper to lower retina RGC counts were compared with their corresponding visual field data within each eye, a 5-dB loss in sensitivity was associated with 25% RGC loss. For individual points that were abnormal at a probability less than 0.5%, the mean RGC loss was 29%. In control eyes, the loss of RGCs with age was estimated as 7205 cells per year in persons between 55 and 95 years of age. In optic nerves from glaucoma subjects, smaller axons were significantly more likely to be present than larger axons (R2 = 0.78, P<0.001). At least 25% to 35% RGC loss is associated with statistical abnormalities in automated visual field testing. In addition, these data corroborate previous findings that RGCs with larger diameter axons preferentially die in glaucoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ganglion cell losses underlying visual field defects from experimental glaucoma.

              To investigate the relationship between ganglion cell losses and visual field defects caused by glaucoma. Behavioral perimetry and histology data were obtained from 10 rhesus monkeys with unilateral experimental glaucoma that was induced by argon laser treatments to their trabecular meshwork. After significant visual field defects had developed, the retinas were collected for histologic analysis. The ganglion cells were counted by light microscopy in cresyl violet-stained retina sections, and the percentage of ganglion cell loss (treated to control eye counts) was compared with the depth of visual field defect (treated to control eye thresholds) at corresponding retinal and perimetry test locations. Sensitivity losses as a function of ganglion cell losses were analyzed for Goldmann III, white and Goldmann V, and short- and long-wavelength perimetry test stimuli. The relationship between the proportional losses of ganglion cells and visual sensitivity, measured with either white or colored stimuli, was nonlinear. With white stimuli, the visual sensitivity losses were relatively constant (approximately 6 dB) for ganglion cell losses of less than 30% to 50%, and then with greater amounts of cell loss the visual defects were more systematically related to ganglion cell loss (approximately 0.42 dB/percent cell loss). The forms of the neural-sensitivity relationships for visual defects measured with short- or long-wavelength perimetry stimuli were similar when the visual thresholds were normalized to compensate for differences in expected normal thresholds for white and colored perimetry stimuli. Current perimetry regimens with either white or monochromatic stimuli do not provide a useful estimate of ganglion cell loss until a substantial proportion have died. The variance in ganglion cell loss is large for mild defects that would be diagnostic of early glaucoma and for visual field locations near the fovea where sensitivity losses occur relatively late in the disease process. The neural-sensitivity relationships were essentially identical for both white and monochromatic test stimuli, and it therefore seems unlikely that the higher sensitivity for detecting glaucoma with monochromatic stimuli is based on the size-dependent susceptibility of ganglion cells to injury from glaucoma.
                Bookmark

                Author and article information

                Journal
                Indian J Ophthalmol
                IJO
                Indian Journal of Ophthalmology
                Medknow Publications (India )
                0301-4738
                1998-3689
                January 2011
                : 59
                : Suppl1
                : S53-S58
                Affiliations
                Department of Ophthalmology, Hamilton Glaucoma Center, University of California, San Diego, CA, USA
                Author notes
                Correspondence to: Dr. Felipe A Medeiros, Hamilton Glaucoma Center, University of California, 9415 Campus point Dr., San Diego, CA, USA. E-mail: fmedeiros@ 123456eyecenter.ucsd.edu
                Article
                IJO-59-53
                10.4103/0301-4738.73694
                3038506
                21150035
                e45e271a-8b7e-49d9-8cf2-f6df60766ffd
                © Indian Journal of Ophthalmology

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 July 2010
                : 07 October 2010
                Categories
                Symposium

                Ophthalmology & Optometry
                short-wavelength automated perimetry,guided progression analysis,standard automated perimetry,frequency doubling perimetry,sweedish interactive thresholding algorithm

                Comments

                Comment on this article