8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Jet measurements in heavy ion physics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references299

          • Record: found
          • Abstract: not found
          • Article: not found

          The CMS experiment at the CERN LHC

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FastJet user manual

            FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              PYTHIA 6.4 Physics and Manual

              The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.
                Bookmark

                Author and article information

                Journal
                RMPHAT
                Reviews of Modern Physics
                Rev. Mod. Phys.
                American Physical Society (APS)
                0034-6861
                1539-0756
                June 2018
                June 12 2018
                : 90
                : 2
                Article
                10.1103/RevModPhys.90.025005
                e5291221-7976-4119-bc8f-bbaf2470455f
                © 2018

                https://link.aps.org/licenses/aps-default-license

                https://link.aps.org/licenses/aps-default-accepted-manuscript-license

                History

                Comments

                Comment on this article