14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the IVS17bTA microsatellite marker and six CTFR gene mutations in 21 Cuban families with cystic fibrosis Translated title: Caracterización del marcador microsatélite IVS17bTA y seis mutaciones del gen CFTR en 21 familias cubanas con fibrosis quística

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cystic fibrosis is an autosomal recessive disease. Its incidence in Cuba is 1 in 5000 live births. The molecular cause underlying this disease is related to mutations in the regulatory gene encoding the cystic fibrosis transmembrane regulator (CFTR). In this study, the techniques for the study of IVS17bTA microsatellite marker were standardized, and the most frequent mutations in the CFTR gene were also detected for 21 Cuban families. Polymerase chain reaction, agarose and polyacrylamide (plus silver staining) gel electrophoresis techniques were used for both, identification of mutations and microsatellite standardization. Among the 22 Cuban patients, seven were found homozygous, four compound heterozygous and 11 with a single mutation so, 33 chromosomes were molecularly characterized for the 75 %. Twelve allelic variants were found for the IVS17bTA microsatellite; alleles 31 and 7 the most frequent ones. Alleles 31 and 46 were associated to the F508del and R334W mutations, respectively. Among the 21 families, 18 were completely informative for the IVS17bTA microsatellite marker, accounting for 85.7 %. This study helped to complete the diagnosis in those patients in which the responsible mutations in one or both chromosomes had not yet been identified. Besides, we were also able to identify mutations associated with different alleles of the marker without gene sequencing, also helping to decrease the cost of screening.

          Translated abstract

          La fibrosis quística es una enfermedad autosómica recesiva. Su incidencia en Cuba es de 1 de cada 5000 recién nacidos vivos. La causa molecular que provoca esta enfermedad son las mutaciones en el gen regulador transmembranal de la fibrosis quística (CFTR). En este estudio se detectaron las mutaciones más frecuentes en 21 familias cubanas y se estandarizaron las técnicas para el estudio del marcador microsatélite IVS17bTA, lo cual constituyó nuestro objetivo principal. Para la identificación de estas mutaciones y la estandarización del microsatélite, se emplearon las técnicas de reacción en cadena de la polimerasa y electroforesis en geles de agarosa y poliacrilamida (tinción con plata). De los 22 pacientes, se encontraron 7 homocigóticos, 4 heterocigóticos compuestos y 11 con una sola mutación, por lo que se caracterizaron molecularmente 33 cromosomas, lo que representa el 75 %. En el estudio del microsatélite IVS17bTA se encontraron 12 variantes alélicas, los alelos más frecuentes fueron el 31 y el 7. El alelo asociado a la mutación F508del fue el 31 y a la mutación R334W fue el 46. De las 21 familias analizadas, 18 resultaron completamente informativas para el marcador, lo que representa el 85.7 % Este estudio ha ayudado a completar aún más el diagnóstico en los pacientes en los que aún no se han identificado las mutaciones responsables en ambos cromosomas o en uno de ellos. Además se han podido identificar mutaciones asociadas a diferentes alelos del marcador, sin necesidad de secuenciar el gen, lo que aumentaría el costo.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction.

          Interspersed DNA elements of the form (dC-dA)n.(dG-dT)n constitute one of the most abundant human repetitive DNA families. We report that specific human (dC-dA)n.(dG-dT)n blocks are polymorphic in length among individuals and therefore represent a vast new pool of potential genetic markers. Comparison of sequences from the literature for (dC-dA)n.(dG-dT)n blocks cloned two or more times revealed length polymorphisms in seven of eight cases. Variations in the lengths of 10 (dC-dA)n.(dG-dT)n blocks were directly demonstrated by amplifying the DNA within and immediately flanking the repeat blocks by using the polymerase chain reaction and then resolving the amplified DNA on polyacrylamide DNA sequencing gels. Use of the polymerase chain reaction to detect DNA polymorphisms offers improved sensitivity and speed compared with standard blotting and hybridization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

            We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.

              The gene responsible for cystic fibrosis, the most common severe autosomal recessive disorder, is located on the long arm of human chromosome 7, region q31-q32. The gene has recently been identified and shown to be approximately 250 kb in size. To understand the structure and to provide the basis for a systematic analysis of the disease-causing mutations in the gene, genomic DNA clones spanning different regions of the previously reported cDNA were isolated and used to determine the coding regions and sequences of intron/exon boundaries. A total of 22,708 bp of sequence, accounting for approximately 10% of the entire gene, was obtained. Alignment of the genomic DNA sequence with the cDNA sequence showed perfect colinearity between the two and a total of 27 exons, each flanked by consensus splice signals. A number of repetitive elements, including the Alu and Kpn families and simple repeats, such as (GT)17, (GATT)7, and (TA)14, were detected in close vicinity of some of the intron/exon boundaries. At least three of the simple repeats were found to be polymorphic in the population. Although an internal amino acid sequence homology could be detected between the two halves of the predicted polypeptide, especially in the regions of the two putative nucleotide-binding folds (NBF1 and NBF2), the lack of alignment of the nucleotide sequence as well as the different positions of the exon/intron boundaries does not seem to support the hypothesis of a recent gene duplication event. To facilitate detection of mutations by direct sequence analysis of genomic DNA, 28 sets of oligonucleotide primers were designed and tested for their ability to amplify individual exons and the immediately flanking sequences in the introns.
                Bookmark

                Author and article information

                Journal
                bta
                Biotecnología Aplicada
                Biotecnol Apl
                Editorial Elfos Scientiae (La Habana, , Cuba )
                1027-2852
                December 2013
                : 30
                : 4
                : 262-266
                Affiliations
                [01] La Habana orgnameCentro Nacional de Genética Médica, CNGM orgdiv1Laboratorio de Biología Molecular Cuba
                Article
                S1027-28522013000400002 S1027-2852(13)03000402
                e52cffa4-5e46-44f6-8974-922ab290b7d2

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : October 2012
                : May 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 12, Pages: 5
                Product

                SciELO Cuba

                Self URI: Full text available only in PDF format (EN)
                Categories
                REPORT

                cystic fibrosis,polymerase chain reaction,reacción en cadena de la polimerasa,IVS17bTA microsatellite marker,marcador microsatélite IVS17bTA,fibrosis quística

                Comments

                Comment on this article