41
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new member of troglobitic Carychiidae, Koreozospeum nodongense gen. et sp. n. (Gastropoda, Eupulmonata, Ellobioidea) is described from Korea

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          A new genus of troglobitic Carychiidae Jeffreys, 1830 is designated from Nodong Cave, North Chungcheong Province, Danyang, South Korea. This remarkable find represents a great range extension and thus, a highly distant distribution of troglobitic Carychiidae in Asia. The Zospeum -like, carychiid snails were recently included, without a formal description, in records documenting Korean malacofauna. The present paper describes Koreozospeum Jochum & Prozorova, gen. n. and illustrates the type species, Koreozospeum nodongense Lee, Prozorova & Jochum, sp. n. using novel Nano-CT images, including a video, internal shell morphology, SEM and SEM-EDX elemental compositional analysis of the shell.

          Translated abstract

          발췌

          Carychiidae Jeffreys, 1830 (양귀비고둥/동굴거주생명체, 제프리 1830) 의 새로운 속은 한국 충청북도 단양의 노동동굴에서 지정되었다. 이 놀라운 발견은 이 동굴거주생물의 아시아지역까지의 광대한 확장과 상당히 분리된 분포를 나타낸다. “ Zospeum -like” (유럽에서 발견된 달팽이종), carychiid snails 은 최근에 공식적인 명칭없이 한국의 연체동물문서목록에 포함되었다. 본 논문은 Koreozospeum Jochum & Prozorova, gen. n. 을 설명하고 껍질내부 X -ray촬영, SEM과 SEM-EDX 껍질 기본 구성분석등을 나타내는 영상을 포함, 첨단 나노-CT 이미지를 이용하며 신종 Koreozospeum nodongense Lee, Prozorova & Jochum, sp. n. 을 묘사한다.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          New approaches for unravelling reassortment pathways

          Background Every year the human population encounters epidemic outbreaks of influenza, and history reveals recurring pandemics that have had devastating consequences. The current work focuses on the development of a robust algorithm for detecting influenza strains that have a composite genomic architecture. These influenza subtypes can be generated through a reassortment process, whereby a virus can inherit gene segments from two different types of influenza particles during replication. Reassortant strains are often not immediately recognised by the adaptive immune system of the hosts and hence may be the source of pandemic outbreaks. Owing to their importance in public health and their infectious ability, it is essential to identify reassortant influenza strains in order to understand the evolution of this virus and describe reassortment pathways that may be biased towards particular viral segments. Phylogenetic methods have been used traditionally to identify reassortant viruses. In many studies up to now, the assumption has been that if two phylogenetic trees differ, it is because reassortment has caused them to be different. While phylogenetic incongruence may be caused by real differences in evolutionary history, it can also be the result of phylogenetic error. Therefore, we wish to develop a method for distinguishing between topological inconsistency that is due to confounding effects and topological inconsistency that is due to reassortment. Results The current work describes the implementation of two approaches for robustly identifying reassortment events. The algorithms rest on the idea of significance of difference between phylogenetic trees or phylogenetic tree sets, and subtree pruning and regrafting operations, which mimic the effect of reassortment on tree topologies. The first method is based on a maximum likelihood (ML) framework (MLreassort) and the second implements a Bayesian approach (Breassort) for reassortment detection. We focus on reassortment events that are found by both methods. We test both methods on a simulated dataset and on a small collection of real viral data isolated in Hong Kong in 1999. Conclusions The nature of segmented viral genomes present many challenges with respect to disease. The algorithms developed here can effectively identify reassortment events in small viral datasets and can be applied not only to influenza but also to other segmented viruses. Owing to computational demands of comparing tree topologies, further development in this area is necessary to allow their application to larger datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

            Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new approach to an old conundrum--DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae).

              The identification of microsnail taxa based on morphological characters is often a time-consuming and inconclusive process. Aspects such as morphological stasis and phenotypic plasticity further complicate their taxonomic designation. In this study, we demonstrate that the application of DNA barcoding can alleviate these problems within the Carychiidae (Gastropoda, Pulmonata). These microsnails are a taxon of the pulmonate lineage and most likely migrated onto land independently of the Stylommatophora clade. Their taxonomical classification is currently based on conchological and anatomical characters only. Despite much confusion about historic species assignments, the Carychiidae can be unambiguously subdivided into two taxa: (i) Zospeum species, which are restricted to karst caves, and (ii) Carychium species, which occur in a broad range of environmental conditions. The implementation of discrete molecular data (COI marker) enabled us to correctly designate 90% of the carychiid microsnails. The remaining cases were probably cryptic Zospeum and Carychium taxa and incipient species, which require further investigation into their species status. Because conventional reliance upon mostly continuous (i.e. nondiscrete) conchological characters is subject to fallibility for many gastropod species assignments, we highly recommend the use of DNA barcoding as a taxonomic, cutting-edge method for delimiting microsnail taxa. © 2010 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Journal
                Zookeys
                Zookeys
                ZooKeys
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2015
                12 August 2015
                : 517
                : 39-57
                Affiliations
                [1 ]Naturhistorisches Museum der Burgergemeinde Bern, CH-3005 Bern, Switzerland, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
                [2 ]Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
                [3 ]Department of Biology, Shinshu University, Matsumoto 390-8621, Japan
                Author notes
                Corresponding author: Adrienne Jochum ( Adrienne.jochum@ 123456gmail.com )

                Academic editor: Martin Haase

                Article
                10.3897/zookeys.517.10154
                4547124
                e5632a83-4f6f-4d19-a76f-a178e2188627
                Adrienne Jochum, Larisa Prozorova, Mariana Sharyi-ool, Barna Páll-Gergely

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2015
                : 21 July 2015
                Categories
                Research Article

                Animal science & Zoology
                cave-dwelling species,subterranean snail,energy-dispersive x-ray spectrometry,microgastropoda,ecology,conservation,animalia,pulmonata,carychiidae

                Comments

                Comment on this article