584
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures – a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo) showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNFα and IL-6) in the brain. Similarly, the Evo mutant significantly increased TNFα production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions can elicit adaptations of C. glabrata to distinct host niches and even lead to hypervirulent strains.

          Author Summary

          Evolution is not limited to making new species emerge and others perish over the millennia. It is also a central force in shorter-term interactions between microbes and hosts. A good example can be found in fungi, which are an underestimated cause of human diseases. Some fungi exist as commensals, and have adapted well to life on human epithelia. But as facultative pathogens, they face a different, hostile environment. We tested the ability of C. glabrata, a pathogen closely related to baker's yeast, to adapt to macrophages. We found that by adaptation, it changed its growth type completely. This allowed the fungus to escape the phagocytes, and increased its virulence in a mouse model. Sequencing the complete genome revealed surprisingly few mutations. Further analyses allowed us to detect the single mutation responsible for the phenotype, and to recreate it in the parental strain. Our work shows that fungi can adapt to immune cells, and that this adaptation can lead to an increased virulence. Since commensals are continuously exposed to host cells, we suggest that this ability could lead to unexpected phenotype changes, including an increase in virulence potential.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli.

          A procedure for the rapid isolation of DNA from the yeast Saccharomyces cerevisiae is described. To release plasmid DNA for the transformation of Escherichia coli, cells are subjected to vortex mixing in the presence of acid-washed glass beads, Triton X-100, sodium dodecyl sulfate, phenol and chloroform. Centrifugation of this mixture separates the DNA from cellular debris. E. coli can be efficiently transformed with plasmid present in the aqueous layer without further purification of the plasmid DNA. This procedure also releases chromosomal DNA. Following two ethanol precipitations, the chromosomal DNA can be digested by restriction endonucleases and analysed by Southern blot analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing of natural strains of Arabidopsis thaliana with short reads.

            Whole-genome hybridization studies have suggested that the nuclear genomes of accessions (natural strains) of Arabidopsis thaliana can differ by several percent of their sequence. To examine this variation, and as a first step in the 1001 Genomes Project for this species, we produced 15- to 25-fold coverage in Illumina sequencing-by-synthesis (SBS) reads for the reference accession, Col-0, and two divergent strains, Bur-0 and Tsu-1. We aligned reads to the reference genome sequence to assess data quality metrics and to detect polymorphisms. Alignments revealed 823,325 unique single nucleotide polymorphisms (SNPs) and 79,961 unique 1- to 3-bp indels in the divergent accessions at a specificity of >99%, and over 2000 potential errors in the reference genome sequence. We also identified >3.4 Mb of the Bur-0 and Tsu-1 genomes as being either extremely dissimilar, deleted, or duplicated relative to the reference genome. To obtain sequences for these regions, we incorporated the Velvet assembler into a targeted de novo assembly method. This approach yielded 10,921 high-confidence contigs that were anchored to flanking sequences and harbored indels as large as 641 bp. Our methods are broadly applicable for polymorphism discovery in moderate to large genomes even at highly diverged loci, and we established by subsampling the Illumina SBS coverage depth required to inform a broad range of functional and evolutionary studies. Our pipeline for aligning reads and predicting SNPs and indels, SHORE, is available for download at http://1001genomes.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans.

              The pathogenesis of cryptococcosis, including the events leading to the production of meningoencephalitis, is still largely unknown. Evidence of a transcellular passage of Cryptococcus neoformans across the blood-brain barrier (BBB) and subsequent BBB disruption exists, but the paracellular passage of free yeasts and the role of monocytes in yeast dissemination and brain invasion (Trojan horse method) remain uncertain. We used our model of disseminated cryptococcosis, in which crossing of the BBB starts 6 h after intravenous inoculation, to study paracellular passage of the BBB. We prepared bone marrow-derived monocytes (BMDM) infected in vitro with C. neoformans (BMDM yeasts) and free yeasts and measured fungal loads in tissues. (i) Spleen and lung CFU were >2-fold higher in mice treated with BMDM yeasts than in those treated with free yeasts for 1 and 24 h (P < 0.05), while brain CFU were increased (3.9 times) only at 24 h (P < 0.05). (ii) By comparing the kinetics of brain invasion in naïve mice and in mice with preestablished cryptococcosis, we found that CFU were lower in the latter case, except at 6 h, when CFU from mice inoculated with BMDM yeasts were comparable to those measured in naïve mice and 2.5-fold higher than those in mice with preestablished cryptococcosis who were inoculated with free yeasts. (iii) Late phagocyte depletion obtained by clodronate injection reduced disease severity and lowered the fungal burden by 40% in all organs studied. These results provide evidence for Trojan horse crossing of the BBB by C. neoformans, together with mechanisms involving free yeasts, and overall for a role of phagocytes in fungal dissemination.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2014
                30 October 2014
                3 November 2014
                : 10
                : 10
                : e1004478
                Affiliations
                [1 ]Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Jena, Germany
                [2 ]Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
                [3 ]Institute for Medical Microbiology and German National Reference Centre for Systemic Mycoses, University Medical Centre Göttingen, Göttingen, Germany
                [4 ]APHP, Hôpital Bicêtre, Service de Bactériologie-Virologie-Parasitologie, Laboratoire de Parasitologie-Mycologie, Kremlin-Bicêtre, France
                [5 ]Department of Dermatology, Eberhard-Karls-University, Tübingen, Germany
                [6 ]Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
                [7 ]INRA, USC2019, Paris, France
                [8 ]Friedrich Schiller University, Jena, Germany
                Albert Einstein College of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SB KS DF BH. Performed the experiments: SB KS DF IDJ LK NJ AW OB AEA. Analyzed the data: SB KS DF IDJ LK NJ AW OB AEA MS CdE. Contributed reagents/materials/analysis tools: MS CdE. Wrote the paper: SB KS DF IDJ LK OB CdE BH.

                Article
                PPATHOGENS-D-14-00846
                10.1371/journal.ppat.1004478
                4214790
                25356907
                e5697e82-8f26-4d0f-ad97-e974857ec319
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2014
                : 17 September 2014
                Page count
                Pages: 18
                Funding
                This work was partially supported by the by the Center for Sepsis Control and Care (CSCC; German Federal Ministry of Education and Health [BMBF, www.bmbf.de] grant 01EO1002), the ERA-NET PathoGenoMics Program (Candicol; BMBF 0315 901 B), and the Deutsche Forschungsgemeinschaft ( www.dfg.de, Hu528/15-1 within the priority programme SPP 1580 – “Intracellular compartments as places of pathogen-host-interaction” and Hu528/17-1 “Microevolution of pathogenic yeasts during interactions with the host immune system”). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Immune Cells
                Evolutionary Biology
                Evolutionary Processes
                Evolutionary Adaptation
                Microevolution
                Organismal Evolution
                Microbial Evolution
                Genetics
                Fungal Genetics
                Immunology
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Mycology
                Fungal Evolution
                Medicine and Health Sciences
                Infectious Diseases
                Fungal Diseases
                Pathology and Laboratory Medicine
                Pathogenesis
                Host-Pathogen Interactions
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article