6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations

      , , ,
      Bioinformatics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A heterogeneous network topology possessing abundant interactions between biomedical entities has yet to be utilized in similarity-based methods for predicting drug-target associations based on the array of varying features of drugs and their targets. Deep learning reveals features of vertices of a large network that can be adapted in accommodating the similarity-based solutions to provide a flexible method of drug-target prediction.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Linked Data - The Story So Far

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Universal Protein Resource (UniProt)

            The Universal Protein Resource (UniProt) provides a stable, comprehensive, freely accessible, central resource on protein sequences and functional annotation. The UniProt Consortium is a collaboration between the European Bioinformatics Institute (EBI), the Protein Information Resource (PIR) and the Swiss Institute of Bioinformatics (SIB). The core activities include manual curation of protein sequences assisted by computational analysis, sequence archiving, development of a user-friendly UniProt website, and the provision of additional value-added information through cross-references to other databases. UniProt is comprised of four major components, each optimized for different uses: the UniProt Knowledgebase, the UniProt Reference Clusters, the UniProt Archive and the UniProt Metagenomic and Environmental Sequences database. UniProt is updated and distributed every three weeks, and can be accessed online for searches or download at http://www.uniprot.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prediction of drug–target interaction networks from the integration of chemical and genomic spaces

              Motivation: The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we characterize four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug–target interaction network topology. We then develop new statistical methods to predict unknown drug–target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug–target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call ‘pharmacological space’. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug–target interaction networks. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery. Availability: Softwares are available upon request. Contact: Yoshihiro.Yamanishi@ensmp.fr Supplementary information: Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Oxford University Press (OUP)
                1367-4803
                1460-2059
                August 01 2017
                August 01 2017
                : 33
                : 15
                : 2337-2344
                Article
                10.1093/bioinformatics/btx160
                5860112
                28430977
                e5718d71-6d84-4559-8f2c-772f9ff60d81
                © 2017
                History

                Comments

                Comment on this article