5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Crisis in the Treatment of Osteoporosis : EDITORIAL

      1 , 2
      Journal of Bone and Mineral Research
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Bisphosphonates: the first 40 years.

          R. Russell (2011)
          The first full publications on the biological effects of the diphosphonates, later renamed bisphosphonates, appeared in 1969, so it is timely after 40years to review the history of their development and their impact on clinical medicine. This special issue of BONE contains a series of review articles covering the basic science and clinical aspects of these drugs, written by some of many scientists who have participated in the advances made in this field. The discovery and development of the bisphosphonates (BPs) as a major class of drugs for the treatment of bone diseases has been a fascinating story, and is a paradigm of a successful journey from 'bench to bedside'. Bisphosphonates are chemically stable analogues of inorganic pyrophosphate (PPi), and it was studies on the role of PPi as the body's natural 'water softener' in the control of soft tissue and skeletal mineralisation that led to the need to find inhibitors of calcification that would resist hydrolysis by alkaline phosphatase. The observation that PPi and BPs could not only retard the growth but also the dissolution of hydroxyapatite crystals prompted studies on their ability to inhibit bone resorption. Although PPi was unable to do this, BPs turned out to be remarkably effective inhibitors of bone resorption, both in vitro and in vivo experimental systems, and eventually in humans. As ever more potent BPs were synthesised and studied, it became apparent that physico-chemical effects were insufficient to explain their biological effects, and that cellular actions must be involved. Despite many attempts, it was not until the 1990s that their biochemical actions were elucidated. It is now clear that bisphosphonates inhibit bone resorption by being selectively taken up and adsorbed to mineral surfaces in bone, where they interfere with the action of the bone-resorbing osteoclasts. Bisphosphonates are internalised by osteoclasts and interfere with specific biochemical processes. Bisphosphonates can be classified into at least two groups with different molecular modes of action. The simpler non-nitrogen containing bisphosphonates (such as etidronate and clodronate) can be metabolically incorporated into non-hydrolysable analogues of ATP, which interfere with ATP-dependent intracellular pathways. The more potent, nitrogen-containing bisphosphonates (including pamidronate, alendronate, risedronate, ibandronate and zoledronate) are not metabolised in this way but inhibit key enzymes of the mevalonate/cholesterol biosynthetic pathway. The major enzyme target for bisphosphonates is farnesyl pyrophosphate synthase (FPPS), and the crystal structure elucidated for this enzyme reveals how BPs bind to and inhibit at the active site via their critical N atoms. Inhibition of FPPS prevents the biosynthesis of isoprenoid compounds (notably farnesol and geranylgeraniol) that are required for the post-translational prenylation of small GTP-binding proteins (which are also GTPases) such as rab, rho and rac, which are essential for intracellular signalling events within osteoclasts. The accumulation of the upstream metabolite, isopentenyl pyrophosphate (IPP), as a result of inhibition of FPPS may be responsible for immunomodulatory effects on gamma delta (γδ) T cells, and can also lead to production of another ATP metabolite called ApppI, which has intracellular actions. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of BPs have been made, and more than a dozen have been studied in man. As reviewed elsewhere in this issue, bisphosphonates are established as the treatments of choice for various diseases of excessive bone resorption, including Paget's disease of bone, the skeletal complications of malignancy, and osteoporosis. Several of the leading BPs have achieved 'block-buster' status with annual sales in excess of a billion dollars. As a class, BPs share properties in common. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various BPs. Each BP has a unique profile in terms of mineral binding and cellular effects that may help to explain potential clinical differences among the BPs. Even though many of the well-established BPs have come or are coming to the end of their patent life, their use as cheaper generic drugs is likely to continue for many years to come. Furthermore in many areas, e.g. in cancer therapy, the way they are used is not yet optimised. New 'designer' BPs continue to be made, and there are several interesting potential applications in other areas of medicine, with unmet medical needs still to be fulfilled. The adventure that began in Davos more than 40 years ago is not yet over. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention.

            Fragility fractures are common, affecting almost one in two older women and one in three older men. Every fragility fracture signals increased risk of future fractures as well as risk of premature mortality. Despite the major health care impact worldwide, currently there are few systems in place to identify and "capture" individuals after a fragility fracture to ensure appropriate assessment and treatment (according to national guidelines) to reduce future fracture risk and adverse health outcomes. The Task Force reviewed the current evidence about different systematic interventional approaches, their logical background, as well as the medical and ethical rationale. This included reviewing the evidence supporting cost-effective interventions and developing a toolkit for reducing secondary fracture incidence. This report presents this evidence for cost-effective interventions versus the human and health care costs associated with the failure to address further fractures. In particular, it summarizes the evidence for various forms of Fracture Liaison Service as the most effective intervention for secondary fracture prevention. It also summarizes the evidence that certain interventions, particularly those based on patient and/or community-focused educational approaches, are consistently, if unexpectedly, ineffective. As an international group, representing 36 countries throughout Asia-Pacific, South America, Europe, and North America, the Task Force reviewed and summarized the international data on barriers encountered in implementing risk-reduction strategies. It presents the ethical imperatives for providing quality of care in osteoporosis management. As part of an implementation strategy, it describes both the quality improvement methods best suited to transforming care and the research questions that remain outstanding. The overarching outcome of the Task Force's work has been the provision of a rational background and the scientific evidence underpinning secondary fracture prevention and stresses the utility of one form or another of a Fracture Liaison Service in achieving those quality outcomes worldwide. © 2012 American Society for Bone and Mineral Research. Copyright © 2012 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur.

              A number of recent case reports and series have identified a subgroup of atypical fractures of the femoral shaft associated with bisphosphonate use. A population-based study did not support this association. Such a relationship has not been examined in randomized trials. We performed secondary analyses using the results of three large, randomized bisphosphonate trials: the Fracture Intervention Trial (FIT), the FIT Long-Term Extension (FLEX) trial, and the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly (HORIZON) Pivotal Fracture Trial (PFT). We reviewed fracture records and radiographs (when available) from all hip and femur fractures to identify those below the lesser trochanter and above the distal metaphyseal flare (subtrochanteric and diaphyseal femur fractures) and to assess atypical features. We calculated the relative hazards for subtrochanteric and diaphyseal fractures for each study. We reviewed 284 records for hip or femur fractures among 14,195 women in these trials. A total of 12 fractures in 10 patients were classified as occurring in the subtrochanteric or diaphyseal femur, a combined rate of 2.3 per 10,000 patient-years. As compared with placebo, the relative hazard was 1.03 (95% confidence interval [CI], 0.06 to 16.46) for alendronate use in the FIT trial, 1.50 (95% CI, 0.25 to 9.00) for zoledronic acid use in the HORIZON-PFT trial, and 1.33 (95% CI, 0.12 to 14.67) for continued alendronate use in the FLEX trial. Although increases in risk were not significant, confidence intervals were wide. The occurrence of fracture of the subtrochanteric or diaphyseal femur was very rare, even among women who had been treated with bisphosphonates for as long as 10 years. There was no significant increase in risk associated with bisphosphonate use, but the study was underpowered for definitive conclusions. 2010 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Journal of Bone and Mineral Research
                J Bone Miner Res
                Wiley
                08840431
                August 2016
                August 2016
                June 28 2016
                : 31
                : 8
                : 1485-1487
                Affiliations
                [1 ]Robert and Arlene Kogod Center on Aging and Endocrine Research Unit; Mayo Clinic College of Medicine; Rochester MN USA
                [2 ]Division of Endocrinology; Department of Medicine, Columbia University; New York NY USA
                Article
                10.1002/jbmr.2888
                27335158
                e5ec293b-8e5e-4b34-b243-c58863283694
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article