1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward Predicting Interfacial Tension of Impure and Pure CO 2-Brine Systems Using Robust Correlative Approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the context of global climate change, significant attention is being directed toward renewable energy and the pivotal role of carbon capture and storage (CCS) technologies. These innovations involve secure CO 2 storage in deep saline aquifers through structural and capillary processes, with the interfacial tension (IFT) of the CO 2-brine system influencing the storage capacity of formations. In this study, an extensive data set of 2811 experimental data points was compiled to model the IFT of impure and pure CO 2-brine systems. Three white-box machine learning (ML) methods, namely, genetic programming (GP), gene expression programming (GEP), and group method of data handling (GMDH) were employed to establish accurate mathematical correlations. Notably, the study utilized two distinct modeling approaches: one focused on impurity compositions and the other incorporating a pseudocritical temperature variable (Tcm) offering a versatile predictive tool suitable for various gas mixtures. Among the correlation methods explored, GMDH, employing five inputs, exhibited exceptional accuracy and reliability across all metrics. Its mean absolute percentage error (MAPE) values for testing, training, and complete data sets stood at 7.63, 7.31, and 7.38%, respectively. In the case of six-input models, the GEP correlation displayed the highest precision, with MAPE values of 9.30, 8.06, and 8.31% for the testing, training, and total data sets, respectively. The sensitivity and trend analyses revealed that pressure exerted the most significant impact on the IFT of CO 2-brine, showcasing an adverse effect. Moreover, an impurity possessing a critical temperature below that of CO 2 resulted in an elevated IFT. Consequently, this relationship leads to higher impurity concentrations aligning with lower Tcm values and subsequently elevated IFT. Also, monovalent and divalent cation molalities exhibited a growing influence on the IFT, with divalent cations exerting approximately double the influence of monovalent cations. Finally, the Leverage approach confirmed both the reliability of the experimental data and the robust statistical validity of the best correlations established in this study.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Carbon capture and storage (CCS): the way forward

          Carbon capture and storage (CCS) is vital to climate change mitigation, and has application across the economy, in addition to facilitating atmospheric carbon dioxide removal resulting in emissions offsets and net negative emissions. This contribution reviews the state-of-the-art and identifies key challenges which must be overcome in order to pave the way for its large-scale deployment. Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO 2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO 2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carbon capture and storage update

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon dioxide capture: prospects for new materials.

              The escalating level of atmospheric carbon dioxide is one of the most pressing environmental concerns of our age. Carbon capture and storage (CCS) from large point sources such as power plants is one option for reducing anthropogenic CO(2) emissions; however, currently the capture alone will increase the energy requirements of a plant by 25-40%. This Review highlights the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO(2)/N(2) separation), precombustion (CO(2)/H(2)) capture, and natural gas sweetening (CO(2)/CH(4)). The key factor which underlies significant advancements lies in improved materials that perform the separations. In this regard, the most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                06 February 2024
                20 February 2024
                : 9
                : 7
                : 7937-7957
                Affiliations
                []CNOOC EnerTech-Drilling & Production Co., Ltd. , Tianjin 300452, China
                []State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) , Beijing 102249, China
                Author notes
                Author information
                https://orcid.org/0009-0003-0072-8309
                Article
                10.1021/acsomega.3c07956
                10882694
                e62e4435-a6ba-495b-b813-e981b31b9073
                © 2024 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 October 2023
                : 23 January 2024
                : 18 January 2024
                Funding
                Funded by: China National Offshore Oil Corporation, doi 10.13039/501100003764;
                Award ID: NA
                Categories
                Article
                Custom metadata
                ao3c07956
                ao3c07956

                Comments

                Comment on this article