3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular imprinting: perspectives and applications.

          Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in molecular imprinting technology: current status, challenges and highlighted applications.

            Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Modification of polyethersulfone membranes – A review of methods

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                July 07 2019
                December 2019
                August 18 2019
                December 2019
                : 31
                : 50
                : 1902048
                Affiliations
                [1 ]CAS Key Laboratory of Separation Sciences for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
                [2 ]Zhang Dayu School of ChemistryDalian University of Technology Dalian 116024 China
                Article
                10.1002/adma.201902048
                e65bbc62-9e18-49c0-89f4-6173b1be82f2
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article