5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics for the treatment of drug-resistant infections. Due to their versatility and unlimited sequence space, AMPs can be rationally designed by modulating physicochemical determinants to favor desired biological parameters and turned into novel therapeutics. In this study, we utilized key structural and physicochemical parameters, in combination with rational engineering, to design novel short α-helical hybrid peptides inspired by the well-known natural peptides, cathelicidin and aurein. By comparing homologous sequences and abstracting the conserved residue type, sequence templates of cathelicidin (P0) and aurein (A0) were obtained. Two peptide derivatives, P7 and A3, were generated by amino acid substitution based on their residue composition and distribution. In order to enhance antimicrobial activity, a hybrid analog of P7A3 was designed. The results demonstrated that P7A3 had higher antibacterial activity than the parental peptides with unexpectedly high hemolytic activity. Strikingly, C-terminal truncation of hybrid peptides containing only the α-helical segment (PA-18) and shorter derivatives confer potent antimicrobial activity with reduced hemolytic activity in a length‐dependent manner. Among all, PA-13, showed remarkable broad-spectrum antibacterial activity, especially against Pseudomonas aeruginosa with no toxicity. PA-13 maintained antimicrobial activity in the presence of physiological salts and displayed rapid binding and penetration activity which resulted in membrane depolarization and permeabilization. Moreover, PA-13 showed an anti-inflammatory response via lipopolysaccharide (LPS) neutralization with dose-dependent, inhibiting, LPS-mediated Toll-like receptor activation. This study revealed the therapeutic potency of a novel hybrid peptide, and supports the use of rational design in development of new antibacterial agents.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Pseudomonas aeruginosa: all roads lead to resistance.

          Pseudomonas aeruginosa is often resistant to multiple antibiotics and consequently has joined the ranks of 'superbugs' due to its enormous capacity to engender resistance. It demonstrates decreased susceptibility to most antibiotics due to low outer membrane permeability coupled to adaptive mechanisms and can readily achieve clinical resistance. Newer research, using mutant library screens, microarray technologies and mutation frequency analysis, has identified very large collections of genes (the resistome) that when mutated lead to resistance as well as new forms of adaptive resistance that can be triggered by antibiotics themselves, in in vivo growth conditions or complex adaptations such as biofilm growth or swarming motility. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update on the antibiotic resistance crisis.

            Antibiotics tend to lose their efficacy over time due to the emergence and dissemination of resistance among bacterial pathogens. Strains with resistance to multiple antibiotic classes have emerged among major Gram-positive and Gram-negative species including Staphylococcus aureus, Enterococcus spp., Pseudomonas aeruginosa, Acinetobacter spp. Enterobacteriaceae, and Neisseria gonorrhoeae. With some Gram-negatives, resistance may involve most or even all the available antimicrobial options, resulting in extremely drug-resistant or totally drug-resistant phenotypes. This so-called 'antibiotic resistance crisis' has been compounded by the lagging in antibiotic discovery and development programs occurred in recent years, and is jeopardizing the essential role played by antibiotics in current medical practices. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alpha-helical cationic antimicrobial peptides: relationships of structure and function.

              Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a 'single-edged sword' that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.
                Bookmark

                Author and article information

                Contributors
                aratchan@tu.ac.th
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 June 2020
                4 June 2020
                2020
                : 10
                : 9117
                Affiliations
                [1 ]ISNI 0000 0004 1937 1127, GRID grid.412434.4, Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, , Thammasat University, ; Pathum Thani, Thailand
                [2 ]ISNI 0000 0004 1937 0490, GRID grid.10223.32, Department of Helminthology, Faculty of Tropical Medicine, , Mahidol University, ; Bangkok, Thailand
                [3 ]ISNI 0000 0004 1937 0490, GRID grid.10223.32, Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, , Mahidol University, ; Bangkok, Thailand
                Article
                65688
                10.1038/s41598-020-65688-5
                7272617
                32499514
                e69fb549-d03c-4640-b4bd-44e8537309bf
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 January 2020
                : 7 May 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                microbiology,antimicrobials,antibiotics
                Uncategorized
                microbiology, antimicrobials, antibiotics

                Comments

                Comment on this article