22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

          Abstract

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Gold helix photonic metamaterial as broadband circular polarizer.

          We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terahertz magnetic response from artificial materials.

            We show that magnetic response at terahertz frequencies can be achieved in a planar structure composed of nonmagnetic conductive resonant elements. The effect is realized over a large bandwidth and can be tuned throughout the terahertz frequency regime by scaling the dimensions of the structure. We suggest that artificial magnetic structures, or hybrid structures that combine natural and artificial magnetic materials, can play a key role in terahertz devices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Advances in optical angular momentum

                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                2190-4286
                2014
                28 October 2014
                : 5
                : 1887-1898
                Affiliations
                [1 ]Research Institute of Mathematics, Seoul National University, Seoul, 151-747 Korea
                [2 ]School of Computational Sciences, Korea Institute for Advanced Study, Seoul Korea
                [3 ]Dept. of Mathematics, Sunmoon University, Asan, Chungnam 336-708 Korea
                Article
                10.3762/bjnano.5.199
                4222439
                25383300
                e71cbad5-6959-49d0-b2b9-df0ea5c41150
                Copyright © 2014, Lee and Mok; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: ( http://www.beilstein-journals.org/bjnano)

                History
                : 20 July 2014
                : 3 October 2014
                Categories
                Full Research Paper
                Nanoscience
                Nanotechnology

                angular momentum,multiplexing,nanoparticle,orbital,poynting,spin,trajectory

                Comments

                Comment on this article