55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      R31C GNRH1 Mutation and Congenital Hypogonadotropic Hypogonadism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh- beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Gonadotropin-releasing hormone receptors.

          GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oligogenic basis of isolated gonadotropin-releasing hormone deficiency.

            Between the genetic extremes of rare monogenic and common polygenic diseases lie diverse oligogenic disorders involving mutations in more than one locus in each affected individual. Elucidating the principles of oligogenic inheritance and mechanisms of genetic interactions could help unravel the newly appreciated role of rare sequence variants in polygenic disorders. With few exceptions, however, the precise genetic architecture of oligogenic diseases remains unknown. Isolated gonadotropin-releasing hormone (GnRH) deficiency caused by defective secretion or action of hypothalamic GnRH is a rare genetic disease that manifests as sexual immaturity and infertility. Recent reports of patients who harbor pathogenic rare variants in more than one gene have challenged the long-held view that the disorder is strictly monogenic, yet the frequency and extent of oligogenicity in isolated GnRH deficiency have not been investigated. By systematically defining genetic variants in large cohorts of well-phenotyped patients (n = 397), family members, and unaffected subjects (n = 179) for the majority of known disease genes, this study suggests a significant role of oligogenicity in this disease. Remarkably, oligogenicity in isolated GnRH deficiency was as frequent as homozygosity/compound heterozygosity at a single locus (2.5%). Among the 22% of patients with detectable rare protein-altering variants, the likelihood of oligogenicity was 11.3%. No oligogenicity was detected among controls (P < 0.05), even though deleterious variants were present. Viewing isolated GnRH deficiency as an oligogenic condition has implications for understanding the pathogenesis of its reproductive and nonreproductive phenotypes; deciphering the etiology of common GnRH-related disorders; and modeling the genetic architecture of other oligogenic and multifactorial diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

              Introduction Kallmann syndrome (KS) combines hypogonadotropic hypogonadism and anosmia or hyposmia, i.e., a deficiency of the sense of smell [1]. Anosmia/hyposmia is related to the absence or hypoplasia of the olfactory bulbs and tracts [2]. Hypogonadism is due to deficiency in gonadotropin-releasing hormone [3] and probably results from a failure of embryonic migration of gonadotropin-releasing hormone-synthesizing neurons [4]. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway [5]. In some KS patients other developmental anomalies can be present, which include renal agenesis, cleft lip and/or palate, selective tooth agenesis, and bimanual synkinesis [6]. This is a genetically heterogeneous disease, which affects 1:8000 males and approximately five times less females. Two different genes have so far been identified. Loss-of-function mutations in KAL1 (NCBI GeneID: 3730) [7–9] and FGFR1 (NCBI GeneID: 2260) [10] account for the X-chromosome linked form and an autosomal dominant form of the disease, respectively. KAL1 encodes anosmin-1, a locally restricted glycoprotein of embryonic extracellular matrices [11], which is likely to be involved in fibroblast growth factor-signaling [6,12]. Nearly 80% of the KS patients, however, do not carry a mutation in either of these genes [6]. Because the common infertility in affected individuals and, most importantly, the incomplete penetrance of the disease impede linkage analysis, the positional cloning strategies that have been taken to find causative genes were based on the analysis of rare KS individuals who carry chromosomal rearrangements detectable by cytogenetics techniques [7,8,10]. Here, we used a direct candidate gene approach and identified two novel genes underlying the disease. Results/Discussion We first considered GPR73L1/PROKR2 (NCBI GeneID: 128674), encoding the prokineticin receptor-2 (PROKR2) [13–15], a most relevant candidate because olfactory bulbs do not develop normally in mutant mice lacking this G protein-coupled transmembrane receptor, and these mice also have a severe atrophia of the reproductive system related to the absence of gonadotropin-releasing hormone-synthesizing neurons in the hypothalamus [16]. We thus sequenced the two coding exons of PROKR2 and flanking splice sites in 192 unrelated individuals (144 males and 48 females) affected by KS, including 38 familial cases. Ten different mutations (one frameshift and nine missense mutations) were detected in 14 patients (four familial and ten apparently sporadic cases) in the heterozygous (ten cases), homozygous (two cases), or compound heterozygous (two cases) state (Figure S1, Table 1, and Figure 1). Conservation of the mutated amino acid residues in bovine, murine, and rat orthologous sequences (Figure S2) argues in favor of a deleterious effect for all the missense mutations. However, two of these mutations, p.R268C and p.V331M, as well as a mutation (c.253C>T, p.R85C) affecting the same residue as the p.R85H mutation found in two KS cases and another missense mutation (c.1004C>G, p.T335M) not found in the cohort of KS patients, were detected, once each, in 500 alleles from ethnically matched (Caucasian) control individuals. No other nonsynonymous variant was found in the controls. In the absence of functional testing, one cannot be sure that each missense mutation found in KS individuals is causative of the disease. Nevertheless, together with the KS-like phenotype of Prokr2 knockout mice, the fact that the overall proportion of PROKR2 alleles carrying nonsynonymous mutations is significantly higher in KS patients (18 out of 384 alleles) than in controls (four out of 500 alleles; chi-square value = 13.5, p A (p.R85H) and c.518T>G (p.L173R), were also found in the homozygous state in one patient each. (2.4 MB TIF) Click here for additional data file. Figure S2 Alignment of PROKR2 and PROK2 Amino Acid Sequences in Man, Cow, Mouse, and Rat (CLUSTALW) The missense mutations found in Kallmann syndrome patients are indicated by arrowheads. In the PROK2 sequence, the additional peptide encoded by exon 3 (alternative splicing) is underlined, and the N-terminal AVITGA motif that is critical for the bioactivity of the protein is highlighted in yellow. (91 KB PDF) Click here for additional data file. Figure S3 DNA Sequence Electrophoretograms from the Kallmann Syndrome Patient Carrying Missense Mutations in PROKR2 and KAL1, and Interspecies Comparison of the Amino Acid Sequence of KAL1 (Anosmin-1) around the Mutated Residue Control electrophoretograms are shown on the top. The mutations in PROKR2 and KAL1 are indicated by vertical arrows on the patient's electrophoretograms (bottom). Alignment of the KAL1 amino acid sequences from man, cow, chicken, zebrafish (kal1.1 and kal1.2), Caenorhabditis elegans, and Drosophila melanogaster shows the conservation of the mutated residue (Ser396) in vertebrates and invertebrates (either serine or threonine), whereas most of the surrounding residues are more variable. (943 KB TIF) Click here for additional data file.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                25 July 2013
                : 8
                : 7
                : e69616
                Affiliations
                [1 ]Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
                [2 ]Service d'Endocrinologie et des Maladies de la Reproduction, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicêtre, France
                [3 ]Département d'Endocrinologie et Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hopital de la Timone, Marseille, France
                [4 ]Service d'Endocrinologie, diabétologie et endocrinologie de la reproduction, Hopital Saint-Antoine, Assistance Publique-Hopitaux de Paris, Paris, France
                [5 ]University of Cape Town Medical School, Medical Research Council, Receptor Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, Observatory, Cape Town, South Africa
                [6 ]School of Physiology, University of the Witwatersrand Faculty of Health Sciences, Parktown, Johannesburg, South Africa
                [7 ]Université Paris-Sud, Unité mixte de Recherche en Santé 770, Le Kremlin-Bicetre, France
                [8 ]Equipe Physiologie de l'Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Paris, France
                [9 ]Università degli Studi di Napoli Federico II, Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia e Metabolismo, Napoli, Italy
                [10 ]Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland
                [11 ]Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicetre, France
                John Hopkins University School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LM JB JY AGM. Performed the experiments: LM RB RPM CAF MG RP ML JCT. Analyzed the data: LM JB RB. Contributed reagents/materials/analysis tools: FA PB AC ML TB. Wrote the paper: LM JB JY.

                Article
                PONE-D-13-06829
                10.1371/journal.pone.0069616
                3723855
                23936060
                e73e82e1-92a2-48a0-b1c3-15403fa50ef5
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 February 2013
                : 11 June 2013
                Page count
                Pages: 10
                Funding
                This work was supported in part by grants from Paris-Sud 11 University (Bonus Qualité Recherche 2009, Attractivité Univ. Paris Sud 2010), PHRC HYPOPROTEO P081212 and Fondation pour la Recherche Médicale. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Population Genetics
                Mutation
                Gene Expression
                Genetic Mutation
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                MAPK signaling cascades
                Mathematics
                Statistics
                Biostatistics
                Medicine
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Sexual Reproduction
                Clinical Genetics
                Autosomal Dominant
                Clinical Research Design
                Cohort Studies
                Endocrinology
                Reproductive Endocrinology
                Urology
                Infertility

                Uncategorized
                Uncategorized

                Comments

                Comment on this article