30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The basal ganglia and the cerebellum: nodes in an integrated network

      ,
      Nature Reviews Neuroscience
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance. </p>

          Related collections

          Most cited references122

          • Record: found
          • Abstract: not found
          • Article: not found

          Parallel organization of functionally segregated circuits linking basal ganglia and cortex.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of sensorimotor learning.

            The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reorganization and plasticity in the adult brain during learning of motor skills.

              On the basis of brain imaging studies, Doyon and Ungerleider recently proposed a model describing the cerebral plasticity that occurs in both cortico-striatal and cortico-cerebellar systems of the adult brain during learning of new motor skilled behaviors. This theoretical framework makes several testable predictions with regards to the contribution of these neural systems based on the phase (fast, slow, consolidation, automatization, and retention) and nature of the motor learning processes (motor sequence versus motor adaptation) acquired through repeated practice. There has been recent behavioral, lesion and additional neuroimaging studies that have addressed the assumptions made in this theory that will help in the revision of this model.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Nature
                1471-003X
                1471-0048
                April 11 2018
                Article
                10.1038/s41583-018-0002-7
                6503669
                29643480
                e76a6215-4a54-4d68-83ed-9aaf698cf737
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article