15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the natural history of metachromatic leukodystrophy from interviews with caregivers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and methods

          Metachromatic leukodystrophy (MLD) is a rare, autosomal recessive lysosomal storage disease caused by deficient activity of arylsulfatase A. Neurological involvement results in severe disability and premature death, but understanding of the natural history of the disease remains limited. In this study, 32 caregivers of patients with MLD in the USA (16 with late-infantile MLD; 16 with juvenile MLD) were interviewed about their experiences of the disease. Qualitative analysis of the interview transcripts was performed to gain insights into symptom onset, the diagnostic process and disease progression, with a focus on the differences between late-infantile and juvenile MLD.

          Results

          The mean ages of patients at interview were 7.6 years and 20.7 years for individuals with late-infantile and juvenile MLD, respectively. Patients with late-infantile MLD had a mean age of 1.5 years at symptom onset and 2.6 years at diagnosis. The most common initial symptoms in this group related to problems with gross motor function (12/16 patients); 11 patients never learned to walk independently. For patients with juvenile MLD, the mean ages at symptom onset and diagnosis were 8.7 years and 11.6 years, respectively. Cognitive or social/behavioural problems were the most common first reported symptoms in this group (9/16 and 7/16 patients, respectively); these were generally followed by deterioration in motor function. The rate of functional decline was more rapid in patients with late-infantile MLD than those with juvenile MLD; the mean time from first symptom to first functional loss was 1 year versus 6.1 years, respectively. Nine patients with juvenile MLD and three with late-infantile MLD had undergone a haematopoietic stem cell transplant; outcomes following transplant were variable.

          Conclusions

          Our data highlight clear overall differences in symptom profiles and disease progression between late-infantile and juvenile MLD, but also indicate some degree of interindividual variability within each subtype. These findings are broadly consistent with previously published descriptions of MLD and enhance our knowledge of the natural history of the disease, which ultimately should help to improve patient care and aid assessments of the effectiveness of disease-related interventions in the future.

          Electronic supplementary material

          The online version of this article (10.1186/s13023-019-1060-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Qualitative data analysis for applied policy research

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: the largest single-institution cohort report

            Background Metachromatic Leukodystrophy (MLD) is a rare, fatal demyelinating disorder with limited treatment options. Published outcomes after hematopoietic stem cell transplantation (HSCT) are scant and mixed. We report survival and function following HSCT for a large, single-center MLD cohort. Methods Transplant-related data, survival and serial measures (brain MRI, nerve conduction velocity (NCV), neurologic and neuropsychology evaluations) were reviewed. When possible, parental interviews informed current neurologic status, quality-of-life, and adaptive functioning. Gross motor and expressive functions for late-infantile (LI-MLD) and juvenile (J-MLD) patients were described using previously reported, MLD-specific scales. Results Forty patients with confirmed MLD have undergone HSCT at our center. Twenty-one (53 %) survive at a median 12 years post-HSCT. Most deaths (n = 17) were treatment-related; two died from disease progression. Survival did not depend upon MLD subtype or symptom status at transplant. LI-MLD patients survive beyond reported life expectancy in untreated disease. Abnormal brain MRI and peripheral nerve conduction velocities (NCV) were common before HSCT. Following transplant, fewer patients experienced MRI progression compared to NCV deterioration. Sixteen LI-MLD and J-MLD survivors were evaluable for long-term gross motor and/or expressive language functioning using existing MLD clinical scoring systems. While most J-MLD patients regressed, the aggregate cohort demonstrated superior retention of function compared to published natural history. Seventeen LI-MLD, J-MLD and adult subtype (A-MLD) survivors were evaluable for long-term adaptive functioning, activities of daily living, and/or cognition. Relative cognitive sparing was observed despite overall global decline. Five sibling pairs (one LI-MLD and four J-MLD), in which at least one underwent transplant in our cohort, were evaluable. Within each familial dyad, survival or function was superior for the treated sibling, or if both siblings were transplanted, for the pre-symptomatic sibling. Conclusions HSCT is a viable treatment option for MLD, but has significant limitations. Later-onset phenotypes may benefit most from early, pre-symptomatic transplant. Until superior, novel treatment strategies are demonstrated, MLD patients should be carefully considered for HSCT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metachromatic leukodystrophy--an update.

              Metachromatic leukodystrophy (MLD) is a rare lysosomal sphingolipid storage disorder, caused by a deficiency of arylsulfatase A (ASA). It is inherited in an autosomal recessive way, among Caucasians three causing alleles are frequent. Demyelination is the hallmark of MLD. Interest in the disease has increased as therapeutic options such as stem cell transplantation, enzyme replacement and gene therapy are topics of current research. A late-infantile (onset before 3 years of age), a juvenile form (onset before 16 years) and an adult form are usually distinguished. Rapid motor decline is typical for the first and also the second forms, the second may be preceded by cognitive and behavioural problems, which mainly characterize the adult form. There is evidence for a genotype-phenotype correlation: patients homozygous for alleles which do not allow the expression of any enzyme activity (null-allele) suffer from the late infantile form; heterozygosity for a null allele and a non-null allele are more associated with the juvenile form and homozygosity for non-null alleles is more frequent in the most attenuated adult onset form.
                Bookmark

                Author and article information

                Contributors
                +1 978-402-6051 , magdalena.a.harrington@pfizer.com
                dwhalley@rti.org
                jtwiss@rti.org
                rconroy@rti.org
                smartin@rti.org
                lynn.huynh@analysisgroup.com
                hongbo.yang@analysisgroup.com
                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                29 April 2019
                29 April 2019
                2019
                : 14
                : 89
                Affiliations
                [1 ]GRID grid.428043.9, Shire, a member of the Takeda group of companies, ; Lexington, MA USA
                [2 ]Present address: Pfizer, 610 Main St, Cambridge, MA 02139 USA
                [3 ]ISNI 0000 0004 0629 621X, GRID grid.416262.5, RTI Health Solutions, ; Manchester, UK
                [4 ]RTI Health Solutions, Ann Arbor, MI USA
                [5 ]ISNI 0000 0004 4660 9516, GRID grid.417986.5, Analysis Group, Inc., ; Boston, MA USA
                Article
                1060
                10.1186/s13023-019-1060-2
                6489348
                31036045
                e82d4ebf-f31d-41f0-80e0-0fddf8d6e360
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 November 2018
                : 8 April 2019
                Funding
                Funded by: Shire (a Takeda company)
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                metachromatic leukodystrophy,mld,lysosomal storage disease,caregiver,qualitative research,natural history

                Comments

                Comment on this article