24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The importance of the tumor microenvironment in chronic lymphocytic leukemia is widely accepted. Nevertheless, the understanding of the complex interplay between the various types of bystander cells and chronic lymphocytic leukemia cells is incomplete. Numerous studies have indicated that bystander cells provide chronic lymphocytic leukemia-supportive functions, but it has also become clear that chronic lymphocytic leukemia cells actively engage in the formation of a supportive tumor microenvironment through several cross-talk mechanisms. In this review, we describe how chronic lymphocytic leukemia cells participate in this interplay by inducing migration and tumor-supportive differentiation of bystander cells. Furthermore, chronic lymphocytic leukemia-mediated alterations in the interactions between bystander cells are discussed. Upon bystander cell interaction, chronic lymphocytic leukemia cells secrete cytokines and chemokines such as migratory factors [chemokine (C-C motif) ligand 22 and chemokine (CC motif) ligand 2], which result in further recruitment of T cells but also of monocyte-derived cells. Within the tumor microenvironment, chronic lymphocytic leukemia cells induce differentiation towards a tumor-supportive M2 phenotype of monocyte-derived cells and suppress phagocytosis, but also induce increased numbers of supportive regulatory T cells. Like other tumor types, the differentiation of stromal cells towards supportive cancer-associated fibroblasts is critically dependent on chronic lymphocytic leukemia-derived factors such as exosomes and platelet-derived growth factor. Lastly, both chronic lymphocytic leukemia and bystander cells induce a tolerogenic tumor microenvironment; chronic lymphocytic leukemia-secreted cytokines, such as interleukin-10, suppress cytotoxic T-cell functions, while chronic lymphocytic leukemia-associated monocyte-derived cells contribute to suppression of T-cell function by producing the immune checkpoint factor, programmed cell death-ligand 1. Deeper understanding of the active involvement and cross-talk of chronic lymphocytic leukemia cells in shaping the tumor microenvironment may offer novel clues for designing therapeutic strategies.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct role of macrophages in different tumor microenvironments.

          Macrophages are prominent in the stromal compartment of virtually all types of malignancy. These highly versatile cells respond to the presence of stimuli in different parts of tumors with the release of a distinct repertoire of growth factors, cytokines, chemokines, and enzymes that regulate tumor growth, angiogenesis, invasion, and/or metastasis. The distinct microenvironments where tumor-associated macrophages (TAM) act include areas of invasion where TAMs promote cancer cell motility, stromal and perivascular areas where TAMs promote metastasis, and avascular and perinecrotic areas where hypoxic TAMs stimulate angiogenesis. This review will discuss the evidence for differential regulation of TAMs in these microenvironments and provide an overview of current attempts to target or use TAMs for therapeutic purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Co-evolution of tumor cells and their microenvironment.

            Increasing evidence indicates that tumor-stromal cell interactions have a crucial role in tumor initiation and progression. These interactions modify cellular compartments, leading to the co-evolution of tumor cells and their microenvironment. Although the importance of microenvironmental alterations in tumor development is recognized, the molecular mechanisms underlying these changes are only now beginning to be understood. Epigenetic and gene expression changes have consistently been reported in cancer-associated stromal cells and the influence of the host genotype on tumorigenesis is also well documented. However, the presence of clonally selected somatic genetic alterations within the tumor microenvironment has been controversial. A thorough understanding of the co-evolution of these two cellular compartments will require carefully executed molecular studies combined with mathematical modeling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1.

              A subset of blood cells from patients with B-cell chronic lymphocytic leukemia (CLL) spontaneously differentiates in vitro into large, round, or fibroblast-like adherent cells that display stromal cell markers, namely vimentin and STRO-1. These cells also express stromal cell-derived factor-1 (SDF-1), a CXC chemokine that ordinarily is secreted by marrow stromal cells. Leukemia B cells attach to these blood-derived adherent cells, down-modulate their receptors for SDF-1 (CXCR4), and are protected from undergoing spontaneous apoptosis in vitro. Neutralizing antibodies to SDF-1 inhibit this effect. Moreover, the rapid deterioration in the survival of CLL B cells, when separated from such cells, is mitigated by exogenous SDF-1. This chemokine also results in the rapid down-modulation of CXCR4 and activation of p44/42 mitogen-activated protein-kinase (ERK 1/2) by CLL B cells in vitro. It is concluded that the blood of patients with CLL contains cells that can differentiate into adherent nurse-like cells that protect leukemia cells from undergoing spontaneous apoptosis through an SDF-1-dependent mechanism. In addition to its recently recognized role in CLL B-cell migration, SDF-1-mediated CLL B-cell activation has to be considered a new mechanism involved in the microenvironmental regulation of CLL B-cell survival. (Blood. 2000;96:2655-2663)
                Bookmark

                Author and article information

                Journal
                Haematologica
                Haematologica
                haematol
                Haematologica
                Haematologica
                Ferrata Storti Foundation
                0390-6078
                1592-8721
                September 2017
                : 102
                : 9
                : 1469-1476
                Affiliations
                [1 ]Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, the Netherlands
                [2 ]Department of Hematology, Academic Medical Center, University of Amsterdam, the Netherlands
                [3 ]Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, University of Amsterdam, the Netherlands
                Author notes
                Article
                1021469
                10.3324/haematol.2016.142679
                5685246
                28775118
                e8615cf1-94d7-4567-b7af-8b15c7179565
                Copyright© 2017 Ferrata Storti Foundation

                Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.

                History
                : 27 October 2016
                : 08 June 2017
                Categories
                Review Article

                Comments

                Comment on this article

                scite_

                Similar content374

                Cited by35

                Most referenced authors1,222