Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioconversion of cyanobacteria by black soldier fly larvae (Hermetia illucens L.): Enhancement by antioxidants

      , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2944276e125">Cyanobacterial blooms have been a global environmental problem for decades. Bioconversion by black soldier fly larvae (BSFL) has been widely reported to be a clean and efficient method to remove organic pollutants. In this study, BSFL bioconversion was used to treat cyanobacterial blooms. Antioxidants (a mixture of l-ascorbic acid [180 mg/kg fresh feed] and α-tocopherol [360 mg/kg fresh feed]) were added to compare bioconversion performance against a non-supplemented group. With increasing proportions of cyanobacteria (0%-25% dry mass), the bioconversion efficiency of the antioxidant group improved significantly compared to the control group, and the survival rate of larvae rose from 96.50-45.50% to 98.00-55.83% with antioxidant addition. The toxic effects of exogenous anti-nutrients could be reduced by the antioxidants through inactivation of trypsin inhibitor and enhancement of the microcystin-LR degradation rate. Overall, the BSFL bioremediation capacity was improved with addition of exogenous antioxidants, verifying both the effects and mechanism of antioxidant addition in promoting the bioconversion of cyanobacteria by BSFL and providing a basis for future application and study. </p>

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens

          Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates.

            Black soldier fly larvae are converters of organic waste into edible biomass, of which the composition may depend on the substrate. In this study, larvae were grown on four substrates: chicken feed, vegetable waste, biogas digestate, and restaurant waste. Samples of prepupae and substrates were freeze-dried and proximate, amino acid, fatty acid and mineral analyses were performed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products

              A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                May 2022
                May 2022
                : 822
                : 153524
                Article
                10.1016/j.scitotenv.2022.153524
                35101506
                e880fe23-12fb-41ca-9ff2-c4e4e2db5ab4
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article