49
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating the Significance of Paleophylogeographic Species Distribution Models in Reconstructing Quaternary Range-Shifts of Nearctic Chelonians

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5–10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles). These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i) phylogeographic differentiation; (ii) morphological variation; (iii) physiological tolerances; and (iv) intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i) reconstruct past geographic range modifications, (ii) identify geographic processes that result in genetic bottlenecks; and (iii) predict threats due to anthropogenic climate change in the future.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Conserving biodiversity under climate change: the rear edge matters.

          Modern climate change is producing poleward range shifts of numerous taxa, communities and ecosystems worldwide. The response of species to changing environments is likely to be determined largely by population responses at range margins. In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged. We review recent findings from the fossil record, phylogeography and ecology to illustrate that rear edge populations are often disproportionately important for the survival and evolution of biota. Their ecological features, dynamics and conservation requirements differ from those of populations in other parts of the range, and some commonly recommended conservation practices might therefore be of little use or even counterproductive for rear edge populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conservatism of ecological niches in evolutionary time

            Theory predicts low niche differentiation between species over evolutionary time scales, but little empirical evidence is available. Reciprocal geographic predictions based on ecological niche models of sister taxon pairs of birds, mammals, and butterflies in southern Mexico indicate niche conservatism over several million years of independent evolution (between putative sister taxon pairs) but little conservatism at the level of families. Niche conservatism over such time scales indicates that speciation takes place in geographic, not ecological, dimensions and that ecological differences evolve later.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uses and misuses of bioclimatic envelope modeling.

              Bioclimatic envelope models use associations between aspects of climate and species' occurrences to estimate the conditions that are suitable to maintain viable populations. Once bioclimatic envelopes are characterized, they can be applied to a variety of questions in ecology, evolution, and conservation. However, some have questioned the usefulness of these models, because they may be based on implausible assumptions or may be contradicted by empirical evidence. We review these areas of contention, and suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express. Although improvements in data and methods will have some effect, the usefulness of these models is contingent on their appropriate use, and they will improve mainly via better awareness of their conceptual basis, strengths, and limitations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 October 2013
                : 8
                : 10
                : e72855
                Affiliations
                [1 ]Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
                [2 ]National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
                [3 ]Department of Biogeography, Trier University, Trier, Germany
                [4 ]Department of Geological Sciences, Indiana University, Bloomington, Indiana, United States of America
                University of York, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DR AML PDP. Performed the experiments: DR AML MF PDP. Analyzed the data: DR AML MF FA JD JOE JCH TH DH FI. Contributed reagents/materials/analysis tools: DR AML KS DS. Wrote the paper: DR AML JCH PDP.

                Article
                PONE-D-13-10370
                10.1371/journal.pone.0072855
                3794015
                24130664
                e8df03d5-aa87-4ff8-bc25-aa694faf3eab
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 March 2013
                : 14 July 2013
                Page count
                Pages: 19
                Funding
                This work was supported by the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD; PostDoc fellowship JCH), through a postdoctoral fellowship to AML at the National Institute for Mathematical and Biological Synthesis (NIMBioS), which is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through National Science Foundation (NSF) Award #EF-0832858, with additional support from The University of Tennessee, Knoxville, and through a National Science Foundation Grant EAR-0843935 to PDP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article