10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Point-of-Care Strategies for Detection of Waterborne Pathogens

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Waterborne diseases that originated due to pathogen microorganisms are emerging as a serious global health concern. Therefore, rapid, accurate, and specific detection of these microorganisms (i.e., bacteria, viruses, protozoa, and parasitic pathogens) in water resources has become a requirement of water quality assessment. Significant research has been conducted to develop rapid, efficient, scalable, and affordable sensing techniques to detect biological contaminants. State-of-the-art technology-assisted smart sensors have improved features (high sensitivity and very low detection limit) and can perform in a real-time manner. However, there is still a need to promote this area of research, keeping global aspects and demand in mind. Keeping this view, this article was designed carefully and critically to explore sensing technologies developed for the detection of biological contaminants. Advancements using paper-based assays, microfluidic platforms, and lateral flow devices are discussed in this report. The emerging recent trends, mainly point-of-care (POC) technologies, of water safety analysis are also discussed here, along with challenges and future prospective applications of these smart sensing technologies for water health diagnostics.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Updated Global Burden of Cholera in Endemic Countries

          Background The global burden of cholera is largely unknown because the majority of cases are not reported. The low reporting can be attributed to limited capacity of epidemiological surveillance and laboratories, as well as social, political, and economic disincentives for reporting. We previously estimated 2.8 million cases and 91,000 deaths annually due to cholera in 51 endemic countries. A major limitation in our previous estimate was that the endemic and non-endemic countries were defined based on the countries’ reported cholera cases. We overcame the limitation with the use of a spatial modelling technique in defining endemic countries, and accordingly updated the estimates of the global burden of cholera. Methods/Principal Findings Countries were classified as cholera endemic, cholera non-endemic, or cholera-free based on whether a spatial regression model predicted an incidence rate over a certain threshold in at least three of five years (2008-2012). The at-risk populations were calculated for each country based on the percent of the country without sustainable access to improved sanitation facilities. Incidence rates from population-based published studies were used to calculate the estimated annual number of cases in endemic countries. The number of annual cholera deaths was calculated using inverse variance-weighted average case-fatality rate (CFRs) from literature-based CFR estimates. We found that approximately 1.3 billion people are at risk for cholera in endemic countries. An estimated 2.86 million cholera cases (uncertainty range: 1.3m-4.0m) occur annually in endemic countries. Among these cases, there are an estimated 95,000 deaths (uncertainty range: 21,000-143,000). Conclusion/Significance The global burden of cholera remains high. Sub-Saharan Africa accounts for the majority of this burden. Our findings can inform programmatic decision-making for cholera control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Water Microbiology. Bacterial Pathogens and Water

            Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensing approaches on paper-based devices: a review.

              Paper has been present in the world of analytical chemistry for centuries, but it seems that just a few years back it was rediscovered as a valuable substrate for sensors. We can easily list some of the countless advantages of this simple cellulosic substrate, including mechanical properties, three-dimensional fibrous structure, biocompatibility and biodegradability, easiness of production and modification, reasonable price, and availability all over the world. Those characteristics make paper a first-choice substrate for disposable sensors and integrated sensing platforms. Nowadays, numerous examples of paper-based sensors are being presented in the literature. This review describes some of the most prominent examples classifying them by type of detection: optical (colorimetric, fluorescence, surface-enhanced Raman spectroscopy, and transmittance methods) and electrochemical (voltammetric, potentiometric, and conductivity-based methods). We take a closer look at recent advances in immunoassays fabricated on paper, excluding simple lateral flow tests assembled on nitrocellulose. This review also summarizes the main advantages and disadvantages of the use of paper as a substrate for sensors, as well as its impact on their performance and application, presents a short history of paper in analytical chemistry, and discusses fabrication methods and available sources of paper.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                16 October 2019
                October 2019
                : 19
                : 20
                : 4476
                Affiliations
                [1 ]Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; ssmonikanehra@ 123456gmail.com (M.N.); jyotsanamehta1@ 123456gmail.com (J.M.); or
                [2 ]Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; giovanna.marrazza@ 123456unifi.it
                [3 ]Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
                Author notes
                [* ]Correspondence: sandeep2417@ 123456gjust.org or ksandeep36@ 123456yahoo.com (S.K.); akaushik@ 123456floridapoly.edu (A.K.); Tel.: +91-1662-263378 (S.K.); +1-863-874-8745 (A.K.)
                Author information
                https://orcid.org/0000-0003-2465-7552
                https://orcid.org/0000-0003-4206-1541
                Article
                sensors-19-04476
                10.3390/s19204476
                6833035
                31623064
                e8e3c622-71a9-4e59-be84-b53e8e7501c9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 September 2019
                : 13 October 2019
                Categories
                Review

                Biomedical engineering
                poc sensor,smart sensing,health quality,water health diagnostics,nanotechnology

                Comments

                Comment on this article