24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The creation of a tissue engineering scaffold via electrospinning that has minimal toxicity and uses a solvent system composed of solvents with low toxicity and different cross-linking agents was investigated. First, a solvent system of acetic acid/ethyl acetate/water (50:30:20) with gelatin as a solute was evaluated. The optimum system for electrospinning a scaffold with the desired properties resulted from a gelatin concentration of 10 wt %. Several different methods were used to cross-link the electrospun gelatin fibers, including vapor-phase glutaraldehyde, aqueous phase genipin, and glyceraldehyde, as well as reactive oxygen species from a plasma cleaner. Because glutaraldehyde at high concentrations has been shown to be toxic, we explored other cross-linking methods. Using reactive oxygen species from a plasma cleaner is an easy alternative; however, the degradation reaction dominated the cross-linking reaction and the scaffolds degraded after only a few hours in aqueous medium at 37 °C. Glyceraldehyde and genipin were established as good options for cross-linking agents because of the low toxicity of these cross-linkers and the resistance to dissolution of the cross-linked fibers in cell culture medium at 37 °C. MG63 osteoblastic cells were grown on each of the cross-linked scaffolds. A proliferation assay showed that the cells proliferated as well or better on the cross-linked scaffolds than on traditional two-dimensional polystyrene culture plates.

          Related collections

          Author and article information

          Journal
          Biomacromolecules
          Biomacromolecules
          American Chemical Society (ACS)
          1526-4602
          1525-7797
          Jul 13 2009
          : 10
          : 7
          Affiliations
          [1 ] Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
          Article
          10.1021/bm900036s
          19456101
          e909529e-bb58-43ab-8fa9-786183e304f1
          History

          Comments

          Comment on this article