9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.

      1 ,
      Tree physiology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27%) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves with 90% greater blade area, 26% less mass per unit volume, and 35% lower nitrogen (N) concentration per unit area, leading to a 15% reduction in leaf photosynthetic capacity when carbon exchange rates were based on blade area. However, when carbon exchange rates were based on leaf mass, leaves acclimated to partial sunlight exhibited a 15% greater photosynthetic capacity realized primarily through an increased initial slope of the photosynthetic light response (A/PPFD) curve and increased net photosynthesis at leaf saturation (Amax). Short-term flooding increased leaf mass per unit area more than 19%, reduced foliar N concentrations per unit dry mass by 19%, and initiated reductions in Amax and apparent quantum yield (phi) of seedlings in both light regimes. Greatest impairment of Amax (56% area basis, 65% mass basis) and phi (40%) were observed in leaves receiving full sunlight, and the declines were concomitant with a 35% decrease in chlorophyll concentration. Flooding also depressed instantaneous photosynthetic N-use efficiency (PPNUE) such that Amax decreased 54%, and the initial slope of PPNUE/PPFD curves decreased 33 and 50% for leaves acclimated to partial and full sunlight, respectively. The A/PPFD patterns indicated that the magnitude of flood-induced inhibition of the photosynthetic mechanism of cherrybark oak seedlings is determined partly by the light environment.

          Related collections

          Author and article information

          Journal
          Tree Physiol.
          Tree physiology
          0829-318X
          0829-318X
          Sep 2001
          : 21
          : 15
          Affiliations
          [1 ] Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, P.O. Box 227, Stoneville, MS 38776, USA.
          Article
          11581017
          e90d0247-3bc8-4300-b76c-a626b338d1b5
          History

          Comments

          Comment on this article