17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Second Booster BNT162b2 Restores SARS-CoV-2 Humoral Response in Patients With Multiple Myeloma, Excluding Those Under Anti-BCMA Therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          COVID-19 vaccination leads to a less intense humoral response in patients with multiple myeloma (MM) compared with healthy individuals, whereas the SARS-CoV-2-specific immunity fades over time. The purpose of this study was to explore the kinetics of SARS-CoV-2 neutralizing antibodies (NAbs) in patients with MM after vaccination with the BNT162b2 mRNA vaccine, focusing on their response before (B4D) and at 1 month after the fourth vaccination (M1P4D). Overall, 201 patients with a median age of 67 years were included, whereas 114 (56.7%) were men. The median NAbs levels B4D were 80.0% (±3.5%) and at M1P4D they increased to a median value of 96.1% (±3.7%). The NAb values at M1P4D were similar to those at 1 month post the third dose and superior to all previous timepoints. At M1P4D, the NAbs levels of all the treatment groups increased, apart from the anti-BCMA group. A significant increase in median NAbs values was observed for those receiving CD38-based treatment (n = 43, from 71.0% B4D to 96.0% at M1P4D) and those who did not receive CD38- or BCMA-targeted therapy (n = 137, from 89.6% B4D to 96.3% at M1P4D). Regarding the patients under BCMA-based therapy (n = 21), there was no remarkable increase in NAbs values following the second booster shot (from 3.0% B4D to 4.0% at M1P4D). In conclusion, booster vaccination with the BNT162b2 results in a substantially improved humoral response against SARS-CoV-2 in patients with MM. Anti-BCMA treatment remains an adverse predictive factor for NAbs response; thus, tailored prevention measures should be considered for this patient subgroup.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

          Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar

            Background Waning of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (Covid-19) is a concern. The persistence of BNT162b2 (Pfizer–BioNTech) vaccine effectiveness against infection and disease in Qatar, where the B.1.351 (or beta) and B.1.617.2 (or delta) variants have dominated incidence and polymerase-chain-reaction testing is done on a mass scale, is unclear. Methods We used a matched test-negative, case–control study design to estimate vaccine effectiveness against any SARS-CoV-2 infection and against any severe, critical, or fatal case of Covid-19, from January 1 to September 5, 2021. Results Estimated BNT162b2 effectiveness against any SARS-CoV-2 infection was negligible in the first 2 weeks after the first dose. It increased to 36.8% (95% confidence interval [CI], 33.2 to 40.2) in the third week after the first dose and reached its peak at 77.5% (95% CI, 76.4 to 78.6) in the first month after the second dose. Effectiveness declined gradually thereafter, with the decline accelerating after the fourth month to reach approximately 20% in months 5 through 7 after the second dose. Effectiveness against symptomatic infection was higher than effectiveness against asymptomatic infection but waned similarly. Variant-specific effectiveness waned in the same pattern. Effectiveness against any severe, critical, or fatal case of Covid-19 increased rapidly to 66.1% (95% CI, 56.8 to 73.5) by the third week after the first dose and reached 96% or higher in the first 2 months after the second dose; effectiveness persisted at approximately this level for 6 months. Conclusions BNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after the second dose, but protection against hospitalization and death persisted at a robust level for 6 months after the second dose. (Funded by Weill Cornell Medicine–Qatar and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients

              Abstract Outcomes for patients with hematologic malignancy infected with COVID-19 have not been aggregated. The objective of this study was to perform a systematic review and meta-analysis to estimate the risk of death and other important outcomes for these patients. We searched PubMed and EMBASE up to 20 August 2020 to identify reports of patients with hematologic malignancy and COVID-19. The primary outcome was a pooled mortality estimate, considering all patients and only hospitalized patients. Secondary outcomes included risk of intensive care unit admission and ventilation in hospitalized patients. Subgroup analyses included mortality stratified by age, treatment status, and malignancy subtype. Pooled prevalence, risk ratios (RRs), and 95% confidence intervals (CIs) were calculated using a random-effects model. Thirty-four adult and 5 pediatric studies (3377 patients) from Asia, Europe, and North America were included (14 of 34 adult studies included only hospitalized patients). Risk of death among adult patients was 34% (95% CI, 28-39; N = 3240) in this sample of predominantly hospitalized patients. Patients aged ≥60 years had a significantly higher risk of death than patients <60 years (RR, 1.82; 95% CI, 1.45-2.27; N = 1169). The risk of death in pediatric patients was 4% (95% CI, 1-9; N = 102). RR of death comparing patients with recent systemic anticancer therapy to no treatment was 1.17 (95% CI, 0.83-1.64; N = 736). Adult patients with hematologic malignancy and COVID-19, especially hospitalized patients, have a high risk of dying. Patients ≥60 years have significantly higher mortality; pediatric patients appear to be relatively spared. Recent cancer treatment does not appear to significantly increase the risk of death.
                Bookmark

                Author and article information

                Journal
                Hemasphere
                Hemasphere
                HS9
                HemaSphere
                Lippincott Williams & Wilkins (Philadelphia, PA )
                2572-9241
                August 2022
                29 July 2022
                : 6
                : 8
                : e764
                Affiliations
                [1 ]Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Greece
                [2 ]Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
                [3 ]Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
                Author notes
                Correspondence: Evangelos Terpos ( eterpos@ 123456med.uoa.gr ).
                Article
                00007
                10.1097/HS9.0000000000000764
                9345642
                35928542
                e92dc024-6915-4926-bf5d-e6c05e1f8dea
                Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 18 June 2022
                : 08 July 2022
                Categories
                002
                Article
                Custom metadata
                TRUE

                Comments

                Comment on this article