9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Central mediators involved in the febrile response: effects of antipyretic drugs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor , endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse.

          Two G protein-coupled receptors have been identified that bind corticotropin-releasing factor (CRF) and urocortin (UCN) with high affinity. Hybridization histochemical methods were used to shed light on controversies concerning their localization in rat brain, and to provide normative distributional data in mouse, the standard model for genetic manipulation in mammals. The distribution of CRF-R1 mRNA in mouse was found to be fundamentally similar to that in rat, with expression predominating in the cerebral cortex, sensory relay nuclei, and in the cerebellum and its major afferents. Pronounced species differences in distribution were few, although more subtle variations in the relative strength of R1 expression were seen in several forebrain regions. CRF-R2 mRNA displayed comparable expression in rat and mouse brain, distinct from, and more restricted than that of CRF-R1. Major neuronal sites of CRF-R2 expression included aspects of the olfactory bulb, lateral septal nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamic nucleus, medial and posterior cortical nuclei of the amygdala, ventral hippocampus, mesencephalic raphe nuclei, and novel localizations in the nucleus of the solitary tract and area postrema. Several sites of expression in the limbic forebrain were found to overlap partially with ones of androgen receptor expression. In pituitary, rat and mouse displayed CRF-R1 mRNA signal continuously over the intermediate lobe and over a subset of cells in the anterior lobe, whereas CRF-R2 transcripts were expressed mainly in the posterior lobe. The distinctive expression pattern of CRF-R2 mRNA identifies additional putative central sites of action for CRF and/or UCN. Constitutive expression of CRF-R2 mRNA in the nucleus of the solitary tract, and stress-inducible expression of CRF-R1 transcripts in the paraventricular nucleus may provide a basis for understanding documented effects of CRF-related peptides at a loci shown previously to lack a capacity for CRF-R expression or CRF binding. Other such "mismatches" remain to be reconciled. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokines and their receptors: drug targets in immunity and inflammation.

            The chemokine system coordinates leukocyte migration in immunity and inflammation and is implicated in the pathogenesis of many human diseases. Although several successful strategies have been identified to develop drugs targeting chemokines and their receptors, this has not yet resulted in many new therapeutics. This is likely due to a complexity of the chemokine system, which was not initially appreciated, that is characterized by redundancy, pleiotropy, and differences among species. Nevertheless, our understanding of chemokine biology is continuing to grow and several promising drugs are currently being tested in late-stage clinical trials. In this review, we examine the role of chemokines in health and diseases and discuss strategies to target the chemokine system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune-neural connections: how the immune system's response to infectious agents influences behavior.

              Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood-brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival.
                Bookmark

                Author and article information

                Journal
                Temperature (Austin)
                Temperature (Austin)
                KTMP
                Temperature: Multidisciplinary Biomedical Journal
                Taylor & Francis
                2332-8940
                2332-8959
                Oct-Dec 2015
                13 October 2015
                13 October 2015
                : 2
                : 4 , Temperature Sciences in Brazil. Guest Editor: Cândido Celso Coimbra, PhD. Guest Associate Editors: Christiano A. Machado-Moreira, PhD, and Samuel Penna Wanner, PhD
                : 506-521
                Affiliations
                [1 ]Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
                [2 ]Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
                [3 ]Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
                Author notes
                [* ]Correspondence to: Aleksander R Zampronio; Email: aleksander@ 123456ufpr.br
                Article
                1102802
                10.1080/23328940.2015.1102802
                4843933
                27227071
                e9986ec4-915d-4407-9f24-a8efe849b7df
                © 2015 The Author(s). Published with license by Taylor & Francis

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 2 August 2015
                : 24 September 2015
                : 29 September 2015
                Page count
                Figures: 4, Tables: 1, References: 208, Pages: 16
                Categories
                Review

                chemokine,corticotropin-releasing factor,endogenous opioids,endothelin,fever,prostaglandin,substance p

                Comments

                Comment on this article