7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pharmacology of human sulphonylurea receptor SUR1 and inward rectifier K(+) channel Kir6.2 combination expressed in HEK-293 cells.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. The pharmacological properties of K(ATP) channels generated by stable co-expression of the sulphonylurea receptor SUR1 and the inwardly rectifying K(+) channel Kir6.2 were characterized in HEK-293 cells. 2. [(3)H]-Glyburide (glibenclamide) bound to transfected cells with a B(max) value of 18.5 pmol mg(-1) protein and with a K(D) value of 0.7 nM. Specific binding was displaced by a series of sulphonylurea analogues with rank order potencies consistent with those observed in pancreatic RINm5F insulinoma and in the brain. 3. Functional activity of K(ATP) channels was assessed by whole cell patch clamp, cation efflux and membrane potential measurements. Whole cell currents were detected in transfected cells upon depletion of internal ATP or by exposure to 500 microM diazoxide. The currents showed weak inward rectification and were sensitive to inhibition by glyburide (IC(50)=0.92 nM). 4. Metabolic inhibition by 2-deoxyglucose and oligomycin treatment triggered (86)Rb(+) efflux from transfected cells that was sensitive to inhibition by glyburide (IC(50)=3.6 nM). 5. Diazoxide, but not levcromakalim, evoked concentration-dependen decreases in DiBAC(4)(3) fluorescence responses with an EC(50) value of 14.1 microM which were attenuated by the addition of glyburide. Diazoxide-evoked responses were inhibited by various sulphonylurea analogues with rank order potencies that correlated well with their binding affinities. 6. In summary, results from ligand binding and functional assays demonstrate that the pharmacological properties of SUR1 and Kir6.2 channels co-expressed in HEK-293 cells resemble those typical of native K(ATP) channels described in pancreatic and neuronal tissues.

          Related collections

          Author and article information

          Journal
          Br. J. Pharmacol.
          British journal of pharmacology
          Springer Nature
          0007-1188
          0007-1188
          Apr 2000
          : 129
          : 7
          Affiliations
          [1 ] Neurological & Urological Diseases Research, Abbott Laboratories, Abbott Park, Illinois, IL 60064, USA. murali.gopalakrishnan@abbott.com
          Article
          10.1038/sj.bjp.0703181
          1571965
          10742287
          e99fc463-87bc-4dd9-a33e-90c891f34626
          History

          Comments

          Comment on this article