5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Metabolic Landscape for Maintaining Retina Integrity and Function

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurons have high metabolic demands that are almost exclusively met by glucose supplied from the bloodstream. Glucose is utilized in complex metabolic interactions between neurons and glia cells, described by the astrocyte-neuron lactate shuttle (ANLS) hypothesis. The neural retina faces similar energy demands to the rest of the brain, with additional high anabolic needs to support continuous renewal of photoreceptor outer segments. This demand is met by a fascinating variation of the ANLS in which photoreceptors are the central part of a metabolic landscape, using glucose and supplying surrounding cells with metabolic intermediates. In this review we summarize recent evidence on how neurons, in particular photoreceptors, meet their energy and biosynthetic requirements by comprising a metabolic landscape of interdependent cells.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the Warburg effect: the metabolic requirements of cell proliferation.

          In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the origin of cancer cells.

            O WARBURG (1956)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.

              The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain. Copyright © 2014 the authors 0270-6474/14/3411929-19$15.00/0.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                15 April 2021
                2021
                : 14
                : 656000
                Affiliations
                [1] 1Department of Molecular Life Sciences, University of Zurich , Zurich, Switzerland
                [2] 2Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences , Zurich, Switzerland
                Author notes

                Edited by: Daniele Dell’Orco, University of Verona, Italy

                Reviewed by: Pierre J. Magistretti, King Abdullah University of Science and Technology, Saudi Arabia; James Hurley, University of Washington, United States

                *Correspondence: Stephan C. F. Neuhauss, stephan.neuhauss@ 123456mls.uzh.ch
                Article
                10.3389/fnmol.2021.656000
                8081888
                33935647
                e9d1ad39-faa4-4753-8813-473bf1122621
                Copyright © 2021 Viegas and Neuhauss.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 January 2021
                : 22 March 2021
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 118, Pages: 12, Words: 0
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Categories
                Neuroscience
                Review

                Neurosciences
                metabolism,retina,brain,photoreceptor,glucose metabolism
                Neurosciences
                metabolism, retina, brain, photoreceptor, glucose metabolism

                Comments

                Comment on this article