1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstructing 3D human pose and shape from a single image and sparse IMUs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Background

          Model-based 3D pose estimation has been widely used in many 3D human motion analysis applications, in which vision-based and inertial-based are two distinct lines. Multi-view images in a vision-based markerless capture system provide essential data for motion analysis, but erroneous estimates still occur due to ambiguities, occlusion, or noise in images. Besides, the multi-view setting is hard for the application in the wild. Although inertial measurement units (IMUs) can obtain accurate direction without occlusion, they are usually susceptible to magnetic field interference and drifts. Hybrid motion capture has drawn the attention of researchers in recent years. Existing 3D pose estimation methods jointly optimize the parameters of the 3D pose by minimizing the discrepancy between the image and IMU data. However, these hybrid methods still suffer from the issues such as complex peripheral devices, sensitivity to initialization, and slow convergence.

          Methods

          This article presents an approach to improve 3D human pose estimation by fusing a single image with sparse inertial measurement units (IMUs). Based on a dual-stream feature extract network, we design a model-attention network with a residual module to closely couple the dual-modal feature from a static image and sparse inertial measurement units. The final 3D pose and shape parameters are directly obtained by a regression strategy.

          Results

          Extensive experiments are conducted on two benchmark datasets for 3D human pose estimation. Compared to state-of-the-art methods, the per vertex error (PVE) of human mesh reduces by 9.4 mm on Total Capture dataset and the mean per joint position error (MPJPE) reduces by 7.8 mm on the Human3.6M dataset. The quantitative comparison demonstrates that the proposed method could effectively fuse sparse IMU data and images and improve pose accuracy.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bidirectional recurrent neural networks

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ Comput Sci
                PeerJ Comput Sci
                peerj-cs
                PeerJ Computer Science
                PeerJ Inc. (San Diego, USA )
                2376-5992
                24 May 2023
                2023
                : 9
                : e1401
                Affiliations
                [1 ]School of Information Science and Engineering, Ningbo University , Ningbo, China
                [2 ]Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo, China
                [3 ]School of Mechanical Engineering, Zhejiang University of Technology , Hangzhou, China
                Article
                cs-1401
                10.7717/peerj-cs.1401
                10280469
                ea00287d-c1e5-42fb-932b-72f26b634019
                ©2023 Liao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                History
                : 21 December 2022
                : 25 April 2023
                Funding
                This work is supported by the Ningbo Science and Technology Innovation Project (No.2021Z013). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Human-Computer Interaction
                Artificial Intelligence
                Computer Vision

                3d human pose and shape,a single image with sparse inertial measurement units,dual-stream feature extract network,model-attention network with a residual module,regression

                Comments

                Comment on this article