90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress.

          Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is the primary transcription factor protecting cells from oxidative stress by regulating cytoprotective genes, including the antioxidant glutathione (GSH) pathway. GSH maintains cellular redox status and affects redox signaling, cell proliferation, and death. GSH homeostasis is regulated by de novo synthesis as well as GSH redox state; previous studies have demonstrated that Nrf2 regulates GSH homeostasis by affecting de novo synthesis. We report that Nrf2 modulates the GSH redox state by regulating glutathione reductase (GSR). In response to oxidants, lungs and embryonic fibroblasts (MEFs) from Nrf2-deficient (Nrf2(-/-)) mice showed lower levels of GSR mRNA, protein, and enzyme activity relative to wild type (Nrf2(+/+)). Nrf2(-/-) MEFs exhibited greater accumulation of glutathione disulfide and cytotoxicity compared to Nrf2(+/+) MEFs in response to t-butylhydroquinone, which was rescued by restoring GSR. Microinjection of glutathione disulfide induced greater apoptosis in Nrf2(-/-) MEFs compared to Nrf2(+/+) MEFs. In silico promoter analysis of the GSR gene revealed three putative antioxidant-response elements (ARE1, -44; ARE2, -813; ARE3, -1041). Reporter analysis, site-directed mutagenesis, and chromatin immunoprecipitation assays demonstrated binding of Nrf2 to two AREs distal to the transcription start site. Overall, Nrf2 is critical for maintaining the GSH redox state via transcriptional regulation of GSR and protecting cells against oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study.

            Oral fumarate (BG00012) might have dual anti-inflammatory and neuroprotective effects. Our aim was to assess the efficacy and safety of BG00012 in patients with relapsing-remitting multiple sclerosis. 257 patients, aged 18-55 years, with relapsing-remitting multiple sclerosis were randomly assigned to receive 120 mg once daily (n=64), 120 mg three times daily (n=64), or 240 mg three times daily (n=64) BG00012, or placebo (n=65) for 24 weeks. During an extension period of 24 weeks for safety assessment, patients treated with placebo received BG00012 240 mg three times daily. The primary endpoint was total number of new gadolinium enhancing (GdE) lesions on brain MRI scans at weeks 12, 16, 20, and 24. Additional endpoints included cumulative number of new GdE lesions (weeks 4-24), new or enlarging T2-hyperintense lesions, new T1-hypointense lesions at week 24, and annualised relapse rate. Analysis was done on the efficacy-evaluable population. Safety and tolerability were also assessed. This study is registered with ClinicalTrials.gov, number NCT00168701. Treatment with BG00012 240 mg three times daily reduced by 69% the mean total number of new GdE lesions from week 12 to 24 compared with placebo (1.4 vs 4.5, p<0.0001). It also reduced number of new or enlarging T2-hyperintense (p=0.0006) and new T1-hypointense (p=0.014) lesions compared with placebo. BG00012 reduced annualised relapse rate by 32% (0.44 vs 0.65 for placebo; p=0.272). Adverse events more common in patients given BG00012 than in those given placebo included abdominal pain, flushing, and hot flush. Dose-related adverse events in patients on BG00012 were headache, fatigue, and feeling hot. The anti-inflammatory effects and favourable safety profile of BG00012 warrant further long-term phase III studies in large patient groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line.

              A neuronal cell line, HT-22, is sensitive to glutamate cytotoxicity via a non-receptor mediated oxidative pathway. 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, blocks this glutamate-induced cell death. Down-regulation of protein kinase C eliminates the protection against glutamate cytotoxicity afforded by TPA. The data suggest that protein kinase C activation blocks an early step in the cytotoxic pathway.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2017
                1 January 2017
                : 2017
                : 6093903
                Affiliations
                1Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn 2) and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
                2Department of Neurology, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
                Author notes

                Academic Editor: Albena Dinkova-Kostova

                Author information
                http://orcid.org/0000-0001-7987-658X
                http://orcid.org/0000-0002-8774-0057
                Article
                10.1155/2017/6093903
                5237454
                28116039
                ea75ef5e-0fcf-483a-8fbf-536178031ea3
                Copyright © 2017 Christina Hoffmann et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 June 2016
                : 5 November 2016
                : 16 November 2016
                Funding
                Funded by: Biogen
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article