1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Use of Freshly Isolated Human Adipose Stromal Cells for Clinical Applications

      , ,
      Aesthetic Surgery Journal
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis

          Introduction Regenerative medicine and particular adult stem cells represent an alternative option with several fruitful therapeutic applications in patients suffering from chronic lung diseases including idiopathic pulmonary fibrosis (IPF). Nevertheless, lack of knowledge regarding the origin and the potential of mesenchymal stem cells (MSCs) to differentiate into fibroblasts has limited their use for the treatment of this dismal disease. Patients and methods To this end, we conducted a phase Ib, non-randomized, clinical trial to study the safety of three endobronchial infusions of autologous adipose derived stromal cells (ADSCs)-stromal vascular fraction (SVF) (0.5 million cells per kgr of body weight per infusion) in patients with IPF (n=14) of mild to moderate disease severity (forced vital capacity –FVC>50% predicted value and diffusion lung capacity for carbon monoxide-DLCO>35% of predicted value). Our primary end-point was incidence of treatment emergent adverse events within 12 months. Alterations of functional, exercise capacity and quality of life parameters at serial time points (baseline, 6 and 12 months after first infusion) were exploratory secondary end-points. Results No cases of serious or clinically meaningful adverse events including short-term infusional toxicities as well as long-term ectopic tissue formation were recorded in all patients. Detailed safety monitoring through several time-points indicated that cell-treated patients did not deteriorate in both functional parameters and indicators of quality of life. Conclusions The clinical trial met its primary objective demonstrating an acceptable safety profile of endobronchially administered autologous ADSCs-SVF. Our findings accelerate the rapidly expanded scientific knowledge and indicate a way towards future efficacy trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            "In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells

            Background The stromal vascular fraction (SVF) is a heterogeneous cell population derived from the adipose tissue. There is still a lack of information concerning the characterization of the cell subpopulations constituting the SVF as well as its mesenchymal and haematopoietic potential. Furthermore there are great variations in its phenotypical characterization. Methods Composition of SVF was investigated by FACS analysis, cytological and "in vitro" assays. We studied CD34+ population by combining FACS with human CFC (colony-forming-cell haematopoietic assay). The endothelial fraction was investigated by quantifying the co-expression of specific markers (CD146, CD105, CD31 and UEA-1). Mesenchymal potential was assessed by CFU-F assay and cultured AT-MSC were characterized by a 5-color FACS analysis. The multipotent differentiation potential (osteogenic, adipogenic and chondrogenic) was investigated both at cellular and molecular level. Results We identified in the SVF two CD34+ populations with a marked difference in the intensity of antigen expression, the majority of the cells expressing CD34 at low intensity. Moreover, two CD146+ cell populations were clearly distinguishable in the SVF:a CD146 dim accounting for 9.9% of the total SVF cells and a CD146+ bright cell population accounting for about 39.3%. The frequency of CFC clones was comparable with the one reported for peripheral blood. Endothelial cells account for about 7.7% of the SVF cells. AT-MSC differenced in the osteogenic adipogenic and chondrogenic lineage. Conclusion The SVF is not a homogeneous cell population, and its final composition could be influenced both by the flow cytometric technique analysis and the SVF extraction steps. The CFU-F frequency in the SVF was 1/4880, a value about seven times greater than the data reported for bone marrow. The antigenic profile of AT-MSC was comparable with bone-marrow derived MSC. AT-MSC were able to differentiate along the osteogenic adipogenic and chondrogenic lineages. The data here reported, further contribute to the characterization of SVF, a tissue providing an alternative as a source of MSC for clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems.

              Supplementation of fat grafts with stromal vascular fraction cells is an emerging technique used to improve graft reliability. A variety of systems for isolating stromal vascular fraction cells are commercially available. The lack of performance data obtained operating the systems in a standardized environment prevents objective assessment of performance. This prospective, blinded study compared performance of four commercially available stromal vascular fraction isolation systems when operated in a clinical outpatient surgery environment.
                Bookmark

                Author and article information

                Journal
                Aesthetic Surgery Journal
                Oxford University Press (OUP)
                1090-820X
                1527-330X
                July 2017
                July 01 2017
                June 14 2017
                July 2017
                July 01 2017
                June 14 2017
                : 37
                : suppl_3
                : S4-S8
                Article
                10.1093/asj/sjw270
                eb271bcb-adc7-4bf0-9e64-c02f3e5f47dc
                © 2017
                History

                Comments

                Comment on this article