124
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fibril structure of amyloid-ß(1-42) by cryoelectron microscopy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyloids are implicated in neurodegenerative diseases. Fibrillar aggregates of the amyloid-β protein (Aβ) are the main component of the senile plaques found in brains of Alzheimer’s disease patients. We present the structure of an Aβ(1-42) fibril composed of two intertwined protofilaments determined by cryoelectron microscopy (cryo-EM) to 4.0 Å resolution, complemented by solid-state nuclear magnetic resonance (NMR) experiments. The backbone of all 42 residues and nearly all sidechains are well resolved in the EM density map, including the entire N terminus, which is part of the cross-β structure resulting in an overall "LS"-shaped topology of individual subunits. The dimer interface protects the hydrophobic C termini from the solvent. The unique staggering of the nonplanar subunits results in markedly different fibril ends, termed "groove" and "ridge," leading to different binding pathways on both fibril ends, which has implications for fibril growth.

          Related collections

          Author and article information

          Journal
          Science
          Science
          American Association for the Advancement of Science (AAAS)
          0036-8075
          1095-9203
          September 2017
          :
          :
          : eaao2825
          Article
          10.1126/science.aao2825
          6080689
          28882996
          eb78def5-a44e-4073-b8e1-311ebf4d0a6e
          History

          Comments

          Comment on this article