28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10 6) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          High-dose acetylcysteine in idiopathic pulmonary fibrosis.

          Idiopathic pulmonary fibrosis is a chronic progressive disorder with a poor prognosis. We conducted a double-blind, randomized, placebo-controlled multicenter study that assessed the effectiveness over one year of a high oral dose of acetylcysteine (600 mg three times daily) added to standard therapy with prednisone plus azathioprine. The primary end points were changes between baseline and month 12 in vital capacity and in single-breath carbon monoxide diffusing capacity (DL(CO)). A total of 182 patients were randomly assigned to treatment (92 to acetylcysteine and 90 to placebo). Of these patients, 155 (80 assigned to acetylcysteine and 75 to placebo) had usual interstitial pneumonia, as confirmed by high-resolution computed tomography and histologic findings reviewed by expert committees, and did not withdraw consent before the start of treatment. Fifty-seven of the 80 patients taking acetylcysteine (71 percent) and 51 of the 75 patients taking placebo (68 percent) completed one year of treatment. Acetylcysteine slowed the deterioration of vital capacity and DL(CO): at 12 months, the absolute differences in the change from baseline between patients taking acetylcysteine and those taking placebo were 0.18 liter (95 percent confidence interval, 0.03 to 0.32), or a relative difference of 9 percent, for vital capacity (P=0.02), and 0.75 mmol per minute per kilopascal (95 percent confidence interval, 0.27 to 1.23), or 24 percent, for DL(CO) (P=0.003). Mortality during the study was 9 percent among patients taking acetylcysteine and 11 percent among those taking placebo (P=0.69). There were no significant differences in the type or severity of adverse events between patients taking acetylcysteine and those taking placebo, except for a significantly lower rate of myelotoxic effects in the group taking acetylcysteine (P=0.03). Therapy with acetylcysteine at a dose of 600 mg three times daily, added to prednisone and azathioprine, preserves vital capacity and DL(CO) in patients with idiopathic pulmonary fibrosis better than does standard therapy alone. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder.

            Epithelial integrity in metazoan organs is maintained through the regulated proliferation and differentiation of organ-specific stem and progenitor cells. Although the epithelia of organs such as the intestine regenerate constantly and thus remain continuously proliferative, other organs, such as the mammalian urinary bladder, shift from near-quiescence to a highly proliferative state in response to epithelial injury. The cellular and molecular mechanisms underlying this injury-induced mode of regenerative response are poorly defined. Here we show in mice that the proliferative response to bacterial infection or chemical injury within the bladder is regulated by signal feedback between basal cells of the urothelium and the stromal cells that underlie them. We demonstrate that these basal cells include stem cells capable of regenerating all cell types within the urothelium, and are marked by expression of the secreted protein signal Sonic hedgehog (Shh). On injury, Shh expression in these basal cells increases and elicits increased stromal expression of Wnt protein signals, which in turn stimulate the proliferation of both urothelial and stromal cells. The heightened activity of this signal feedback circuit and the associated increase in cell proliferation appear to be required for restoration of urothelial function and, in the case of bacterial injury, may help clear and prevent further spread of infection. Our findings provide a conceptual framework for injury-induced epithelial regeneration in endodermal organs, and may provide a basis for understanding the roles of signalling pathways in cancer growth and metastasis. ©2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities.

              During development of TGF-β1-initiated fibroproliferative disorders, NADPH oxidases (NOX family members) generate reactive oxygen species (ROS) resulting in downstream transcription of a subset genes encoding matrix structural elements and profibrotic factors. Prominent among the repertoire of disease-implicated genes is the TGF-β1 target gene encoding the potent profibrotic matricellular protein plasminogen activator inhibitor-1 (PAI-1 or SERPINE1). PAI-1 is the major physiologic inhibitor of the plasmin-based pericellular cascade and a causative factor in the development of vascular thrombotic and fibroproliferative disorders. ROS generation in response to TGF-β1 stimulation is rapid and precedes PAI-1 induction; engagement of non-SMAD (e.g., EGFR, Src kinase, MAP kinases, p53) and SMAD2/3 pathways are both required for PAI-1 expression and are ROS-dependent. Recent findings suggest a novel role for p53 in TGF-β1-induced PAI-1 transcription that involves ROS generation and p53/SMAD interactions. Targeting ROS and ROS-activated cellular events is likely to have therapeutic implications in the management of fibrotic disorders, particularly in the context of prolonged TGF-β1 signaling. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                02 August 2016
                2016
                : 6
                : 30881
                Affiliations
                [1 ]Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, 05505, Korea
                [2 ]Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, 05505, Korea
                [3 ]Department of Physiology, University of Ulsan College of Medicine , Seoul, 05505, Korea
                [4 ]Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine , Seoul, 05505, Korea
                [5 ]Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si , Gyeonggi-do, 13494, Korea
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep30881
                10.1038/srep30881
                4969614
                27481042
                ebaa5f00-62e5-43db-9592-1c198aefbaf2
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 May 2016
                : 11 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article