3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          A New Long Phosphorescent Phosphor with High Brightness, SrAl[sub 2]O[sub 4]:Eu[sup 2+],Dy[sup 3+]

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging.

            Near infrared (NIR)-emitting persistent luminescent nanoparticles (PLNPs) have great potential for in vivo bioimaging with the advantages of no need for in situ excitation, high signal-to-noise ratio, and deep tissue penetration. However, functional NIR-emitting PLNPs with long afterglow for long-term in vivo imaging are lacking. Here, we show the synthesis of NIR-emitting long-persistent luminescent nanoparticles (LPLNPs) Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+) by a citrate sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The persistent luminescence of the LPLNPs is significantly improved via codoping Pr(3+)/Cr(3+) and creating suitable Zn deficiency in zinc gallogermanate. The LPLNP powder exhibits bright NIR luminescence in the biological transparency window with a superlong afterglow time of over 15 days. A persistent energy transfer between host and Cr(3+) ion in the LPLNPs is observed and its mechanism is discussed. PEGylation greatly improves the biocompatibility and water solubility of the LPLNPs. Further bioconjugation with c(RGDyK) peptide makes the LPLNPs promising for long-term in vivo targeted tumor imaging with low toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.

              Thermoluminescence properties of the Eu2+-, R3+-doped calcium aluminate materials, CaAl2O4:Eu2+,R3+, were studied above room temperature. The trap depths were estimated with the aid of the preheating and initial rise methods. The seemingly simple glow curve of CaAl2O4:Eu2+ peaking at ca. 80 degrees C was found to correspond to several traps. The Nd3+ and Tm3+ ions, which enhance most the intensity of the high-temperature TL peaks, form the most suitable traps for intense and long-lasting persistent luminescence, too. The location of the 4f and 5d ground levels of the R3+ and R2+ ions were deduced in relation to the band structure of CaAl2O4. No clear correlation was found between the trap depths and the R3+ or R2+ level locations. The traps may thus involve more complex mechanisms than the simple charge transfer to (or from) the R3+ ions. A new persistent luminescence mechanism presented is based on the photoionization of the electrons from Eu2+ to the conduction band followed by the electron trapping to an oxygen vacancy, which is aggregated with a calcium vacancy and a R3+ ion. The migration of the electron from one trap to another and also to the aggregated R3+ ion forming R2+ (or R3+-e-) is then occurring. The reverse process of a release of the electron from traps to Eu2+ will produce the persistent luminescence. The ability of the R3+ ions to trap electrons is probably based on the different reduction potentials and size of the R3+ ions. Hole trapping to a calcium vacancy and/or the R3+ ion may also occur. The mechanism presented can also explain why Na+, Sm3+, and Yb3+ suppress the persistent luminescence.
                Bookmark

                Author and article information

                Journal
                ICHBD9
                Dalton Transactions
                Dalton Trans.
                Royal Society of Chemistry (RSC)
                1477-9226
                1477-9234
                2014
                2014
                : 43
                : 25
                : 9661
                Article
                10.1039/c4dt00223g
                24837685
                ebe25bb3-0e20-4b6a-a708-eb1d7d45c3cd
                © 2014
                History

                Comments

                Comment on this article