48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Biochemical Characterization of an Acid Sphingomyelinase-Like Protein from the Bacterial Plant Pathogen Ralstonia solanacearum that Hydrolyzes ATP to AMP but Not Sphingomyelin to Ceramide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acid sphingomyelinase (aSMase) is a human enzyme that catalyzes the hydrolysis of sphingomyelin to generate the bioactive lipid ceramide and phosphocholine. ASMase deficiency is the underlying cause of the genetic diseases Niemann-Pick Type A and B and has been implicated in the onset and progression of a number of other human diseases including cancer, depression, liver, and cardiovascular disease. ASMase is the founding member of the aSMase protein superfamily, which is a subset of the metallophosphatase (MPP) superfamily. To date, MPPs that share sequence homology with aSMase, termed aSMase-like proteins, have been annotated and presumed to function as aSMases. However, none of these aSMase-like proteins have been biochemically characterized to verify this. Here we identify RsASML, previously annotated as RSp1609: acid sphingomyelinase-like phosphodiesterase, as the first bacterial aSMase-like protein from the deadly plant pathogen Ralstonia solanacearum based on sequence homology with the catalytic and C-terminal domains of human aSMase. A biochemical characterization of RsASML does not support a role in sphingomyelin hydrolysis but rather finds RsASML capable of acting as an ATP diphosphohydrolase, catalyzing the hydrolysis of ATP and ADP to AMP. In addition, RsASML displays a neutral, not acidic, pH optimum and prefers Ni 2+ or Mn 2+, not Zn 2+, for catalysis. This alters the expectation that all aSMase-like proteins function as acid SMases and expands the substrate possibilities of this protein superfamily to include nucleotides. Overall, we conclude that sequence homology with human aSMase is not sufficient to predict substrate specificity, pH optimum for catalysis, or metal dependence. This may have implications to the biochemically uncharacterized human aSMase paralogs, aSMase-like 3a (aSML3a) and aSML3b, which have been implicated in cancer and kidney disease, respectively, and assumed to function as aSMases.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era.

          Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia. Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php? © 2013 BSPP AND JOHN WILEY & SONS LTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.

            Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration of the negatively charged bis(monoacylglycero)phosphate (BMP)--erroneously also called lysobisphosphatidic acid (LBPA)--increases. Glycosphingolipid degradation requires the presence of water-soluble acid exohydrolases, sphingolipid activator proteins, and anionic phospholipids like BMP. The lysosomal degradation of sphingolipids with short hydrophilic head groups requires the presence of sphingolipid activator proteins (SAPs). These are the saposins (Saps) and the GM2 activator protein. Sphingolipid activator proteins are membrane-perturbing and lipid-binding proteins with different specificities for the bound lipid and the activated enzyme-catalyzed reaction. Their inherited deficiency leads to sphingolipid- and membrane-storage diseases. Sphingolipid activator proteins not only facilitate glycolipid digestion but also act as glycolipid transfer proteins facilitating the association of lipid antigens with immunoreceptors of the CD1 family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NPP-type ectophosphodiesterases: unity in diversity.

              Nucleotide pyrophosphatase/phosphodiesterase (NPP)-type ectophosphodiesterases are found at the cell surface as type-I or type-II transmembrane proteins, but are also found extracellularly as secreted or shedded enzymes. They hydrolyze pyrophosphate or phosphodiester bonds in a variety of extracellular compounds including nucleotides, (lyso)phospholipids and choline phosphate esters. Despite their structurally related catalytic domain, each enzyme has well-defined substrate specificity. Catalysis by NPPs affects processes as diverse as cell proliferation and motility, angiogenesis, bone mineralization and digestion. In addition, there is emerging evidence for non-catalytic functions of NPPs in cell signaling. NPP-type ectophosphodiesterases are also implicated in the pathophysiology of cancer, insulin resistance and calcification diseases, and they hold great promise as easily accessible therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 August 2014
                : 9
                : 8
                : e105830
                Affiliations
                [1 ]Department of Medicine and the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
                [2 ]Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
                University of South Florida College of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MVA YAH. Performed the experiments: MVA JMT. Analyzed the data: MVA YAH. Contributed reagents/materials/analysis tools: JS. Contributed to the writing of the manuscript: MVA YAH.

                Article
                PONE-D-14-22861
                10.1371/journal.pone.0105830
                4140839
                25144372
                ec24c432-6e2d-4b18-b576-877fcab7f491
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 May 2014
                : 25 July 2014
                Page count
                Pages: 13
                Funding
                This work was supported by grants from the National Institutes of Health NIGMS R37 GM043825 (to Y.A.H.) and NIGMS F32 GM100679 (to M.V.A.). The MUSC Summer Undergraduate Research Program (SURP) provided additional support (to J.M.T.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Phosphatases
                Acid Phosphatase
                Hydrolases
                Phosphodiesterases
                Lipids
                Sphingolipids
                Nucleotides
                Adenine
                Biochemical Activity
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article