178
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1

      research-article
      1 , , 1 , 1
      BMC Developmental Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The formation of the posterior lateral line of teleosts depends on the migration of a primordium that originates near the otic vesicle and moves to the tip of the tail. Groups of cells at the trailing edge of the primordium slow down at regular intervals and eventually settle to differentiate as sense organs. The migration of the primordium is driven by the chemokine SDF1 and by its receptor CXCR4, encoded respectively by the genes sdf1a and cxcr4b. cxcr4b is expressed in the migrating cells and is down-regulated in the trailing cells of the primordium. sdf1a is expressed along the path of migration. There is no evidence for a gradient of sdf1a expression, however, and the origin of the directionality of migration is not known.

          Results

          Here we document the expression of a second chemokine receptor gene, cxcr7, in the migrating primordium. We show that cxcr7 is highly expressed in the trailing cells of the primordium but not at all in the leading cells, a pattern that is complementary to that of cxcr4b. Even though cxcr7 is not expressed in the cells that lead primordium migration, its inactivation results in impaired migration. The phenotypes of cxcr4b, cxcr7 double morphant embryos suggest, however, that CXCR7 does not contribute to the migratory capabilities of primordium cells. We also show that, in the absence of cxcr4b, expression of cxcr7 becomes ubiquitous in the stalled primordium.

          Conclusion

          Our observations suggest that CXCR7 is required to provide directionality to the migration. We propose that directionality is imposed on the primordium as soon as it comes in contact with the stripe of SDF1, and is maintained throughout migration by a negative interaction between the two receptors.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line.

          The shape of most complex organ systems arises from the directed migration of cohesive groups of cells. Here, we dissect the role of the chemokine guidance receptor Cxcr4b in regulating the collective migration of one such cohesive tissue, the zebrafish lateral line primordium. Using in vivo imaging, we show that the shape and organization of the primordium is surprisingly labile, and that internal cell movements are uncoordinated in embryos with reduced Cxcr4b signaling. Genetic mosaic experiments reveal that single cxcr4b mutant cells can migrate in a directional manner when placed in wild-type primordia, but that they are specifically excluded from the leading edge. Moreover, a remarkably small number of SDF1a-responsive cells are able to organize an entire cxcr4b mutant primordium to restore migration and organogenesis in the lateral line. These results reveal a role for chemokine signaling in mediating the self-organizing migration of tissues during morphogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4.

            Metastasis of cancer cells is a complex process involving multiple steps including invasion, angiogenesis, and trafficking of cancer cells through blood vessels, extravasations, organ-specific homing, and growth. While matrix metalloproteinases, urokinase-type plasminogen activator, and cytokines play a major role in invasion and angiogenesis, chemokines such as stromal derived factor-1alpha (SDF-1alpha) and their receptors such as CXCR4 are thought to play a critical role in motility, homing, and proliferation of cancer cells at specific metastatic sites. We and others have previously reported that the extracellular signal-activated transcription factor NF-kappaB up-regulates the expression of matrix metalloproteinases, urokinase-type plasminogen activator, and cytokines in highly metastatic breast cancer cell lines. In this report, we demonstrate that NF-kappaB regulates the motility of breast cancer cells by directly up-regulating the expression of CXCR4. Overexpression of the inhibitor of kappaB (IkappaB) in breast cancer cells with constitutive NF-kappaB activity resulted in reduced expression of CXCR4 and a corresponding loss of SDF-1alpha-mediated migration in vitro. Introduction of CXCR4 cDNA into IkappaB-expressing cells restored SDF-1alpha-mediated migration. Electrophoretic mobility shift assays and transient transfection assays revealed that the NF-kappaB subunits p65 and p50 bind directly to sequences within the -66 to +7 region of the CXCR4 promoter and activate transcription. We also show that the cell surface expression of CXCR4 and the SDF-1alpha-mediated migration are enhanced in breast cancer cells isolated from mammary fat pad xenografts compared with parental cells grown in culture. A further increase in CXCR4 cell surface expression and SDF-1alpha-mediated migration was observed with cancer cells that metastasized to the lungs. Taken together, these results implicate NF-kappaB in the migration and the organ-specific homing of metastatic breast cancer cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidance of primordial germ cell migration by the chemokine SDF-1.

              The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.
                Bookmark

                Author and article information

                Journal
                BMC Dev Biol
                BMC Developmental Biology
                BioMed Central (London )
                1471-213X
                2007
                29 March 2007
                : 7
                : 23
                Affiliations
                [1 ]Lab of Neurogenetics INSERM U881, Montpellier, France; Université Montpellier II, Montpellier, France
                Article
                1471-213X-7-23
                10.1186/1471-213X-7-23
                1847803
                17394634
                ec2ee8dc-5193-4917-99da-e211ad5da3a2
                Copyright © 2007 Dambly-Chaudière et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 November 2006
                : 29 March 2007
                Categories
                Research Article

                Developmental biology
                Developmental biology

                Comments

                Comment on this article