3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Abnormal Glucose Homeostasis due to Chronic Hyperresistinemia

      , , , , , ,
      Diabetes
      American Diabetes Association

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Lifetime risk for diabetes mellitus in the United States.

          Although diabetes mellitus is one of the most prevalent and costly chronic diseases in the United States, no estimates have been published of individuals' average lifetime risk of developing diabetes. To estimate age-, sex-, and race/ethnicity-specific lifetime risk of diabetes in the cohort born in 2000 in the United States. Data from the National Health Interview Survey (1984-2000) were used to estimate age-, sex-, and race/ethnicity-specific prevalence and incidence in 2000. US Census Bureau data and data from a previous study of diabetes as a cause of death were used to estimate age-, sex-, and race/ethnicity-specific mortality rates for diabetic and nondiabetic populations. Residual (remaining) lifetime risk of diabetes (from birth to 80 years in 1-year intervals), duration with diabetes, and life-years and quality-adjusted life-years lost from diabetes. The estimated lifetime risk of developing diabetes for individuals born in 2000 is 32.8% for males and 38.5% for females. Females have higher residual lifetime risks at all ages. The highest estimated lifetime risk for diabetes is among Hispanics (males, 45.4% and females, 52.5%). Individuals diagnosed as having diabetes have large reductions in life expectancy. For example, we estimate that if an individual is diagnosed at age 40 years, men will lose 11.6 life-years and 18.6 quality-adjusted life-years and women will lose 14.3 life-years and 22.0 quality-adjusted life-years. For individuals born in the United States in 2000, the lifetime probability of being diagnosed with diabetes mellitus is substantial. Primary prevention of diabetes and its complications are important public health priorities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Adipose Tissue as an Endocrine Organ

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pro-inflammatory cytokines and adipose tissue.

              Cytokines appear to be major regulators of adipose tissue metabolism. Therapeutic modulation of cytokine systems offers the possibility of major changes in adipose tissue behaviour. Cytokines within adipose tissue originate from adipocyte, preadipocyte and other cell types. mRNA expression studies show that adipocytes can synthesise both tumour necrosis factor alpha (TNF-alpha) and several interleukins (IL), notably IL-1beta and IL-6. Other adipocyte products with 'immunological' actions include complement system products and macrophage colony-stimulating factor. Cytokine secretion within adipocytes appears similar to that of other cells. There is general agreement that circulating TNF-alpha and IL-6 concentrations are mildly elevated in obesity. Most studies suggest increased TNF-alpha mRNA expression or secretion in vitro in adipose tissue from obese subjects. The factors regulating cytokine release within adipose tissue appear to include usual 'inflammatory' stimuli such as lipopolysaccaride, but also the size of the fat cells per se and catecholamines. There is conflicting data about whether insulin and cortisol regulate TNF-alpha. The effects of cytokines within adipose tissue include some actions that might be characterised as metabolic. TNF-alpha and IL-6 inhibit lipoprotein lipase, and TNF-alpha additionally stimulates hormone-sensitive lipase and induces uncoupling protein expression. TNF-alpha also down regulates insulin-stimulated glucose uptake via effects on glucose transporter 4, insulin receptor autophosphorylation and insulin receptor substrate-1. All these effects will tend to reduce lipid accumulation within adipose tissue. Other effects appear more 'trophic', and include the induction of apoptosis, regulation of cell size and induction of de-differentiation (the latter involving reduced peroxisome proliferator-activated receptor gamma). Cytokines are important stimulators and repressors of other cytokines. In addition, cytokines appear to modulate other regulatory systems. Examples of the latter include effects on leptin secretion (probably stimulation followed by inhibition) and reduction of beta3-adrenoceptor expression. There seems to be no clear agreement as to which cytokines derived from adipose tissue act as remote regulators, i.e. hormones. Leptin, which is structurally a cytokine, is also a hormone. IL-6 appears to be released systemically by adipose tissue, but TNF-alpha is probably not. Both leptin and IL-6 appear to act on the hypothalamus, IL-6 acts on the liver, while leptin may have actions on the pancreas. The importance of the immune system in whole-body energy balance provides a rationale for the links between cytokines and adipose tissue. It seems clear that TNF-alpha is a powerful autocrine and paracrine regulator of adipose tissue. Other cytokines, notably leptin, and possibly IL-6, have lesser actions on adipose tissue. These cytokines act as hormones, reporting the state of adipose tissue stores throughout the body.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 26 2004
                August 01 2004
                June 09 2004
                August 01 2004
                : 53
                : 8
                : 1937-1941
                Article
                10.2337/diabetes.53.8.1937
                ec355d72-df5a-46dc-b65f-69b397854f1e
                © 2004
                History

                Comments

                Comment on this article