17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ambroxol for the treatment of fibromyalgia: science or fiction?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibromyalgia appears to present in subgroups with regard to biological pain induction, with primarily inflammatory, neuropathic/neurodegenerative, sympathetic, oxidative, nitrosative, or muscular factors and/or central sensitization. Recent research has also discussed glial activation or interrupted dopaminergic neurotransmission, as well as increased skin mast cells and mitochondrial dysfunction. Therapy is difficult, and the treatment options used so far mostly just have the potential to address only one of these aspects. As ambroxol addresses all of them in a single substance and furthermore also reduces visceral hypersensitivity, in fibromyalgia existing as irritable bowel syndrome or chronic bladder pain, it should be systematically investigated for this purpose. Encouraged by first clinical observations of two working groups using topical or oral ambroxol for fibromyalgia treatments, the present paper outlines the scientific argument for this approach by looking at each of the aforementioned aspects of this complex disease and summarizes putative modes of action of ambroxol. Nevertheless, at this point the evidence basis for ambroxol is not strong enough for clinical recommendation.

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons.

          Dorsal root ganglion sensory neurons associated with C-fibres, many of which are activated by tissue-damage, express an unusual voltage-gated sodium channel that is resistant to tetrodotoxin. We report here that we have identified a 1,957 amino-acid sodium channel in these cells that shows 65% identity with the rat cardiac tetrodotoxin-insensitive sodium channel, and is not expressed in other peripheral and central neurons, glia or non-neuronal tissues. In situ hybridization shows that the channel is expressed only by small-diameter sensory neurons in neonatal and adult dorsal root and trigeminal ganglia. The channel is resistant to tetrodotoxin when expressed in Xenopus oocytes. The electrophysiological and pharmacological properties of the expressed channel are similar to those described for the small-diameter sensory neuron tetrodotoxin-resistant sodium channels. As some noxious input into the spinal cord is resistant to tetrodotoxin, block of expression or function of such a C-fibre-restricted sodium channel may have a selective analgesic effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cell and molecular basis of mechanical, cold, and inflammatory pain.

            Peripheral pain pathways are activated by a range of stimuli. We used diphtheria toxin to kill all mouse postmitotic sensory neurons expressing the sodium channel Nav1.8. Mice showed normal motor activity and low-threshold mechanical and acute noxious heat responses but did not respond to noxious mechanical pressure or cold. They also showed a loss of enhanced pain responses and spontaneous pain behavior upon treatment with inflammatory insults. In contrast, nerve injury led to heightened pain sensitivity to thermal and mechanical stimuli indistinguishable from that seen with normal littermates. Pain behavior correlates well with central input from sensory neurons measured electrophysiologically in vivo. These data demonstrate that Na(v)1.8-expressing neurons are essential for mechanical, cold, and inflammatory pain but not for neuropathic pain or heat sensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways.

              Many damage-sensing neurons express tetrodotoxin (TTX)-resistant voltage-gated sodium channels. Here we examined the role of the sensory-neuron-specific (SNS) TTX-resistant sodium channel alpha subunit in nociception and pain by constructing sns-null mutant mice. These mice expressed only TTX-sensitive sodium currents on step depolarizations from normal resting potentials, showing that all slow TTX-resistant currents are encoded by the sns gene. Null mutants were viable, fertile and apparently normal, although lowered thresholds of electrical activation of C-fibers and increased current densities of TTX-sensitive channels demonstrated compensatory upregulation of TTX-sensitive currents in sensory neurons. Behavioral studies demonstrated a pronounced analgesia to noxious mechanical stimuli, small deficits in noxious thermoreception and delayed development of inflammatory hyperalgesia. These data show that SNS is involved in pain pathways and suggest that blockade of SNS expression or function may produce analgesia without side effects.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2017
                16 August 2017
                : 10
                : 1905-1929
                Affiliations
                Institute of Pain Medicine/Pain Practice, Wiesbaden, Germany
                Author notes
                Correspondence: Kai-Uwe Kern, Institute of Pain Medicine/Pain Practice, 68 Sonnenberger Strasse, Wiesbaden 65193, Germany, Tel +49 611 2059 2636, Fax +49 611 1687 7838, Email dr.kern@ 123456schmerzpraxis-wiesbaden.de
                Article
                jpr-10-1905
                10.2147/JPR.S139223
                5566330
                28860846
                ec62f99c-c32d-424c-b785-8feac4ea7d8b
                © 2017 Kern and Schwickert. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Hypothesis

                Anesthesiology & Pain management
                nav 1.8,nav 1.7,bromhexine,hyperalgesia,sympathetically maintained pain,central sensitization,interleukins,neuropathic pain,sodium channels

                Comments

                Comment on this article