11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perioperative care of infants with pyloric stenosis

      , ,
      Pediatric Anesthesia
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Cognitive and behavioral outcomes after early exposure to anesthesia and surgery.

          Annually, millions of children are exposed to anesthetic agents that cause apoptotic neurodegeneration in immature animals. To explore the possible significance of these findings in children, we investigated the association between exposure to anesthesia and subsequent (1) learning disabilities (LDs), (2) receipt of an individualized education program for an emotional/behavior disorder (IEP-EBD), and (3) scores of group-administered achievement tests. This was a matched cohort study in which children (N = 8548) born between January 1, 1976, and December 31, 1982, in Rochester, Minnesota, were the source of cases and controls. Those exposed to anesthesia (n = 350) before the age of 2 were matched to unexposed controls (n = 700) on the basis of known risk factors for LDs. Multivariable analysis adjusted for the burden of illness, and outcomes including LDs, receipt of an IEP-EBD, and the results of group-administered tests of cognition and achievement were outcomes. Exposure to multiple, but not single, anesthetic/surgery significantly increased the risk of developing LDs (hazard ratio: 2.12 [95% confidence interval: 1.26-3.54]), even when accounting for health status. A similar pattern was observed for decrements in group-administered tests of achievement and cognition. However, exposure did not affect the rate of children receiving an individualized education program. Repeated exposure to anesthesia and surgery before the age of 2 was a significant independent risk factor for the later development of LDs but not the need for educational interventions related to emotion/behavior. We cannot exclude the possibility that multiple exposures to anesthesia/surgery at an early age may adversely affect human neurodevelopment with lasting consequence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term differences in language and cognitive function after childhood exposure to anesthesia.

            Over the past decade, the safety of anesthetic agents in children has been questioned after the discovery that immature animals exposed to anesthesia display apoptotic neurodegeneration and long-term cognitive deficiencies. We examined the association between exposure to anesthesia in children under age 3 and outcomes in language, cognitive function, motor skills, and behavior at age 10. We performed an analysis of the Western Australian Pregnancy Cohort (Raine) Study, which includes 2868 children born from 1989 to 1992. Of 2608 children assessed, 321 were exposed to anesthesia before age 3, and 2287 were unexposed. On average, exposed children had lower scores than their unexposed peers in receptive and expressive language (Clinical Evaluation of Language Fundamentals: Receptive [CELF-R] and Expressive [CELF-E]) and cognition (Colored Progressive Matrices [CPM]). After adjustment for demographic characteristics, exposure to anesthesia was associated with increased risk of disability in language (CELF-R: adjusted risk ratio [aRR], 1.87; 95% confidence interval [CI], 1.20-2.93, CELF-E: aRR, 1.72; 95% CI, 1.12-2.64), and cognition (CPM: aRR, 1.69; 95% CI, 1.13-2.53). An increased aRR for disability in language and cognition persisted even with a single exposure to anesthesia (CELF-R aRR, 2.41; 95% CI, 1.40-4.17, and CPM aRR, 1.73; 95% CI, 1.04-2.88). Our results indicate that the association between anesthesia and neuropsychological outcome may be confined to specific domains. Children in our cohort exposed to anesthesia before age 3 had a higher relative risk of language and abstract reasoning deficits at age 10 than unexposed children.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits.

              During the brain growth spurt, the brain develops and modifies rapidly. In rodents this period is neonatal, spanning the first weeks of life, whereas in humans it begins during the third trimester and continues 2 yr. This study examined whether different anesthetic agents, alone and in combination, administered to neonate mice, can trigger apoptosis and whether behavioral deficits occur later in adulthood. Ten-day-old mice were injected subcutaneously with ketamine (25 mg/kg), thiopental (5 mg/kg or 25 mg/kg), propofol (10 mg/kg or 60 mg/kg), a combination of ketamine (25 mg/kg) and thiopental (5 mg/kg), a combination of ketamine (25 mg/kg) and propofol (10 mg/kg), or control (saline). Fluoro-Jade staining revealed neurodegeneration 24 h after treatment. The behavioral tests--spontaneous behavior, radial arm maze, and elevated plus maze (before and after anxiolytic)--were conducted on mice aged 55-70 days. Coadministration of ketamine plus propofol or ketamine plus thiopental or a high dose of propofol alone significantly triggered apoptosis. Mice exposed to a combination of anesthetic agents or ketamine alone displayed disrupted spontaneous activity and learning. The anxiolytic action of diazepam was less effective when given to adult mice that were neonatally exposed to propofol. This study shows that both a gamma-aminobutyric acid type A agonist (thiopental or propofol) and an N-methyl-D-aspartate antagonist (ketamine) during a critical stage of brain development potentiated neonatal brain cell death and resulted in functional deficits in adulthood. The use of thiopental, propofol, and ketamine individually elicited no or only minor changes.
                Bookmark

                Author and article information

                Journal
                Pediatric Anesthesia
                Paediatr Anaesth
                Wiley-Blackwell
                11555645
                December 2015
                December 22 2015
                : 25
                : 12
                : 1193-1206
                Article
                10.1111/pan.12792
                ec79baa5-b97a-4f8d-95a0-4624c46c6924
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article