13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans : Genomic Prediction

      , , , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic estimated breeding values (GEBVs) in livestock and polygenic risk scores (PRS) in humans are conceptually similar; however, the between-species differences in linkage disequilibrium (LD) provide a fundamental point of distinction that impacts approaches to data analyses... In this Review, we focus on the similarity of the concepts underlying prediction of estimated breeding values (EBVs) in livestock and polygenic risk scores (PRS) in humans. Our research spans both fields and so we recognize factors that are very obvious for those in one field, but less so for those in the other. Differences in family size between species is the wedge that drives the different viewpoints and approaches. Large family size achievable in nonhuman species accompanied by selection generates a smaller effective population size, increased linkage disequilibrium and a higher average genetic relationship between individuals within a population. In human genetic analyses, we select individuals unrelated in the classical sense (coefficient of relationship <0.05) to estimate heritability captured by common SNPs. In livestock data, all animals within a breed are to some extent “related,” and so it is not possible to select unrelated individuals and retain a data set of sufficient size to analyze. These differences directly or indirectly impact the way data analyses are undertaken. In livestock, genetic segregation variance exposed through samplings of parental genomes within families is directly observable and taken for granted. In humans, this genomic variation is under-recognized for its contribution to variation in polygenic risk of common disease, in both those with and without family history of disease. We explore the equation that predicts the expected proportion of variance explained using PRS, and quantify how GWAS sample size is the key factor for maximizing accuracy of prediction in both humans and livestock. Last, we bring together the concepts discussed to address some frequently asked questions.

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The personal and clinical utility of polygenic risk scores

          Initial expectations for genome-wide association studies were high, as such studies promised to rapidly transform personalized medicine with individualized disease risk predictions, prevention strategies and treatments. Early findings, however, revealed a more complex genetic architecture than was anticipated for most common diseases - complexity that seemed to limit the immediate utility of these findings. As a result, the practice of utilizing the DNA of an individual to predict disease has been judged to provide little to no useful information. Nevertheless, recent efforts have begun to demonstrate the utility of polygenic risk profiling to identify groups of individuals who could benefit from the knowledge of their probabilistic susceptibility to disease. In this context, we review the evidence supporting the personal and clinical utility of polygenic risk profiling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.

            The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nature of nurture: Effects of parental genotypes

              Sequence variants in the parental genomes that are not transmitted to a child (the proband) are often ignored in genetic studies. Here we show that nontransmitted alleles can affect a child through their impacts on the parents and other relatives, a phenomenon we call "genetic nurture." Using results from a meta-analysis of educational attainment, we find that the polygenic score computed for the nontransmitted alleles of 21,637 probands with at least one parent genotyped has an estimated effect on the educational attainment of the proband that is 29.9% (P = 1.6 × 10-14) of that of the transmitted polygenic score. Genetic nurturing effects of this polygenic score extend to other traits. Paternal and maternal polygenic scores have similar effects on educational attainment, but mothers contribute more than fathers to nutrition- and heath-related traits.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                April 09 2019
                April 2019
                April 09 2019
                April 2019
                : 211
                : 4
                : 1131-1141
                Article
                10.1534/genetics.119.301859
                6456317
                30967442
                eca33b09-3974-437a-8fa0-9ec445819e0f
                © 2019
                History

                Comments

                Comment on this article