10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ferroptosis is a novel form of iron-dependent cell death and participates in the malignant progression of glioblastoma (GBM). Although circular RNAs (circRNAs) are found to play key roles in ferroptosis via several mechanisms, including regulating iron metabolism, glutathione metabolism, lipid peroxidation and mitochondrial-related proteins, there are many novel circRNAs regulating ferroptosis need to be found, and they may become a new molecular treatment target in GBM.

          Methods

          The expression levels of circLRFN5, PRRX2 and GCH1 were detected by qPCR, western blotting, and immunohistochemistry. Lentiviral-based infections were used to overexpress or knockdown these molecules in glioma stem cells (GSCs). The biological functions of these molecules on GSCs were detected by MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium), the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell, neurosphere formation assays, Extreme Limiting Dilution Analysis (ELDA) and xenograft experiments. The content of ferroptosis levels in GSCs was detected by BODIPY 581/591 C11 assay, glutathione (GSH) assay and malondialdehyde (MDA) assay. The regulating mechanisms among these molecules were studied by RNA immunoprecipitation assay, RNA pull-down assay, ubiquitination assay, dual-luciferase reporter assay and chromatin immunoprecipitation assay.

          Results

          We found a novel circRNA circLRFN5 is downregulated in GBM and associated with GBM patients’ poor prognosis. CircLRFN5 overexpression inhibits the cell viabilities, proliferation, neurospheres formation, stemness and tumorigenesis of GSCs via inducing ferroptosis. Mechanistically, circLRFN5 binds to PRRX2 protein and promotes its degradation via a ubiquitin-mediated proteasomal pathway. PRRX2 can transcriptionally upregulate GCH1 expression in GSCs, which is a ferroptosis suppressor via generating the antioxidant tetrahydrobiopterin (BH4).

          Conclusions

          Our study found circLRFN5 as a tumor-suppressive circRNA and identified its role in the progression of ferroptosis and GBM. CircLRFN5 can be used as a potential GBM biomarker and become a target for molecular therapies or ferroptosis-dependent therapy in GBM.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13046-022-02518-8.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: mechanisms, biology and role in disease

          The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays.

            ELDA is a software application for limiting dilution analysis (LDA), with particular attention to the needs of stem cell assays. It is the first limiting dilution analysis software to provide meaningful confidence intervals for all LDA data sets, including those with 0% or 100% responses. Other features include a test of the adequacy of the single-hit hypothesis, tests for frequency differences between multiple data sets, and the ability to take advantage of cases where the number of cells in the sample is counted exactly. A webtool at http://bioinf.wehi.edu.au/software/elda/ provides an easy user interface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling

              Ferroptosis is an iron-dependent form of regulated cell death linking iron, lipid, and glutathione levels to degenerative processes and tumor suppression. By performing a genome-wide activation screen, we identified a cohort of genes antagonizing ferroptotic cell death, including GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH4/BH2). Synthesis of BH4/BH2 by GCH1-expressing cells caused lipid remodeling, suppressing ferroptosis by selectively preventing depletion of phospholipids with two polyunsaturated fatty acyl tails. GCH1 expression level in cancer cell lines stratified susceptibility to ferroptosis, in accordance with its expression in human tumor samples. The GCH1-BH4-phospholipid axis acts as a master regulator of ferroptosis resistance, controlling endogenous production of the antioxidant BH4, abundance of CoQ10, and peroxidation of unusual phospholipids with two polyunsaturated fatty acyl tails. This demonstrates a unique mechanism of ferroptosis protection that is independent of the GPX4/glutathione system.
                Bookmark

                Author and article information

                Contributors
                lianggaoh@126.com
                damingcui_ns@163.com
                Journal
                J Exp Clin Cancer Res
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                20 October 2022
                20 October 2022
                2022
                : 41
                : 307
                Affiliations
                [1 ]GRID grid.24516.34, ISNI 0000000123704535, Department of Neurosurgery, , Shanghai Tenth People’s Hospital, Tongji University School of Medicine, ; Shanghai, 200072 China
                [2 ]GRID grid.443573.2, ISNI 0000 0004 1799 2448, Department of Neurosurgery, , Taihe Affiliated Hospital of Hubei University of Medicine, ; Shiyan, 442000 China
                Article
                2518
                10.1186/s13046-022-02518-8
                9583503
                36266731
                ecbf6b5d-9d09-4cd8-a7a6-0b783daa3f03
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 19 June 2022
                : 12 October 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82101439
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010031, Postdoctoral Research Foundation of China;
                Award ID: 267285
                Award Recipient :
                Funded by: Shanghai Post-doctoral Excellence Program
                Award ID: 2021336
                Award Recipient :
                Funded by: the Shanghai Sailing Program
                Award ID: 21YF1449900
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                gscs,ferroptosis,circlrfn5,prrx2,gch1
                Oncology & Radiotherapy
                gscs, ferroptosis, circlrfn5, prrx2, gch1

                Comments

                Comment on this article