9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transforming growth factor-β mediates endothelial dysfunction in rats during high salt intake

      , , ,
      American Journal of Physiology-Renal Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d14455113e175">Endothelial dysfunction has been shown to be predictive of subsequent cardiovascular events and death. Through a mechanism that is incompletely understood, increased dietary salt intake promotes endothelial dysfunction in healthy, salt-resistant humans. The present study tested the hypothesis that dietary salt-induced transforming growth factor (TGF)-β promoted endothelial dysfunction and salt-dependent changes in blood pressure (BP). Sprague-Dawley rats that received diets containing 0.3% NaCl [low salt (LS)] or 8.0% NaCl [high salt (HS)] were treated with vehicle or SB-525334, a specific inhibitor of TGF-β receptor I/activin receptor-like kinase 5, beginning on <i>day 5</i>. BP was monitored using radiotelemetry in four groups of rats (LS, LS + SB-525334, HS, and HS + SB-525334) for up to 14 days. By <i>day 14</i> of the study, mean daytime systolic BP and mean pulse pressure of the HS group treated with vehicle was greater than those in the other three groups; mean daytime systolic BP and pulse pressure of the HS + SB-525334 group did not differ from the LS and LS + SB-525334-treated groups. Whereas mean systolic BP, mean diastolic BP, and mean arterial pressure did not differ among the groups on the seventh day of the study, endothelium-dependent vasorelaxation was impaired specifically in the HS group; treatment with the activin receptor-like kinase 5 inhibitor prevented the dietary HS intake-induced increases in phospho-Smad2 (Ser <sup>465/467</sup>) and NADPH oxidase-4 in endothelial lysates and normalized endothelial function. These findings suggest that HS-induced endothelial dysfunction and the development of salt-dependent increases in BP were related to endothelial TGF-β signaling. </p>

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.

          Coronary endothelial dysfunction is characterized by vasoconstrictive response to the endothelium-dependent vasodilator acetylcholine. Although endothelial dysfunction is considered an early phase of coronary atherosclerosis, there is a paucity of information regarding the outcome of these patients. Thus, this study was designed to evaluate the outcome of patients with mild coronary artery disease on the basis of their endothelial function. Follow-up was obtained in 157 patients with mildly diseased coronary arteries who had undergone coronary vascular reactivity evaluation by graded administration of intracoronary acetylcholine, adenosine, and nitroglycerin and intracoronary ultrasound at the time of diagnostic study. Patients were divided on the basis of their response to acetylcholine into 3 groups: group 1 (n=83), patients with normal endothelial function; group 2 (n=32), patients with mild endothelial dysfunction; and group 3 (n=42), patients with severe endothelial dysfunction. Over an average 28-month follow-up (range, 11 to 52 months), none of the patients from group 1 or 2 had cardiac events. However, 6 (14%) with severe endothelial dysfunction had 10 cardiac events (P<0.05 versus groups 1 and 2). Cardiac events included myocardial infarction, percutaneous or surgical coronary revascularization, and/or cardiac death. Severe endothelial dysfunction in the absence of obstructive coronary artery disease is associated with increased cardiac events. This study supports the concept that coronary endothelial dysfunction may play a role in the progression of coronary atherosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury

            The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91 phox ), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study.

              The relationship between impaired brachial flow-mediated dilation (FMD) and subsequent clinical cardiovascular events is not well established, especially in older adults whose FMD is often diminished. We assessed the hypothesis that FMD predicts incident cardiovascular events in a population-based cohort of older adults. FMD was measured at the 1997 to 1998 Cardiovascular Health Study clinic visit in 2792 adults aged 72 to 98 years (82.7% white, 58.6% women) recruited at 4 clinic sites in the United States. Log-rank test and Cox proportional hazard models were used to examine the association between FMD and adjudicated cardiovascular events. A total of 674 subjects (24.1%) had an adjudicated event over the 5-year follow-up period. Event-free survival rates for cardiovascular events were significantly higher in subjects with FMD greater than the sex-specific medians than in subjects with FMD less than or equal to the sex-specific medians (78.3% versus 73.6%, log-rank P=0.006). FMD remained a significant predictor of cardiovascular events after adjustment for age, gender, diabetes mellitus, cigarette smoking, systolic and diastolic blood pressure, baseline cardiovascular disease status, and total cholesterol (hazard ratio, 0.91 [95% CI, 0.83 to 0.99], P=0.02 per unit SD of FMD) but added only approximately 1% to the prognostic accuracy of the best Cox model. Brachial artery diameter was also predictive of CV events in the adjusted Cox proportional hazard model (hazard ratio, 1.12 [95% CI, 1.02 to 1.28], P=0.025) and also added approximately 1% to the accuracy of our best Cox model. FMD is a predictor of future cardiovascular events but adds very little to the prognostic accuracy of traditional cardiovascular risk scores/factors in older adults. FMD and brachial artery diameter may have similar predictive values for cardiovascular events in older adults.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                December 15 2015
                December 15 2015
                : 309
                : 12
                : F1018-F1025
                Article
                10.1152/ajprenal.00328.2015
                4683308
                26447221
                ecd8c9ad-9fbe-4a77-9208-0852922f2257
                © 2015
                History

                Comments

                Comment on this article