4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phytochemicals for the Prevention of Photocarcinogenesis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references210

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.

          The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012.

            Understanding skin cancer incidence is critical for planning prevention and treatment strategies and allocating medical resources. However, owing to lack of national reporting and previously nonspecific diagnosis classification, accurate measurement of the US incidence of nonmelanoma skin cancer (NMSC) has been difficult.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress in the pathogenesis of skin disease.

              Skin is the largest body organ that serves as an important environmental interface providing a protective envelope that is crucial for homeostasis. On the other hand, the skin is a major target for toxic insult by a broad spectrum of physical (i.e. UV radiation) and chemical (xenobiotic) agents that are capable of altering its structure and function. Many environmental pollutants are either themselves oxidants or catalyze the production of reactive oxygen species (ROS) directly or indirectly. ROS are believed to activate proliferative and cell survival signaling that can alter apoptotic pathways that may be involved in the pathogenesis of a number of skin disorders including photosensitivity diseases and some types of cutaneous malignancy. ROS act largely by driving several important molecular pathways that play important roles in diverse pathologic processes including ischemia-reperfusion injury, atherosclerosis, and inflammatory responses. The skin possesses an array of defense mechanisms that interact with toxicants to obviate their deleterious effect. These include non-enzymatic and enzymatic molecules that function as potent antioxidants or oxidant-degrading systems. Unfortunately, these homeostatic defenses, although highly effective, have limited capacity and can be overwhelmed thereby leading to increased ROS in the skin that can foster the development of dermatological diseases. One approach to preventing or treating these ROS-mediated disorders is based on the administration of various antioxidants in an effort to restore homeostasis. Although many antioxidants have shown substantive efficacy in cell culture systems and in animal models of oxidant injury, unequivocal confirmation of their beneficial effects in human populations has proven elusive.
                Bookmark

                Author and article information

                Journal
                Photochemistry and Photobiology
                Photochem Photobiol
                Wiley
                00318655
                July 2017
                July 2017
                March 14 2017
                : 93
                : 4
                : 956-974
                Affiliations
                [1 ]Department of Dermatology; University of Alabama at Birmingham; Birmingham AL
                [2 ]Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham AL
                Article
                10.1111/php.12711
                ece82578-35b7-4c81-91f7-fe20730e7088
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article