59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Topological acoustics.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological Insulators

          , (2011)
          Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Topological insulators and superconductors

            Topological insulators are new states of quantum matter which can not be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi\(_2\)Te\(_3\) and Bi\(_2\)Se\(_3\) crystals. We review theoretical models, materials properties and experimental results on two-dimensional and three-dimensional topological insulators, and discuss both the topological band theory and the topological field theory. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. We review the theory of topological superconductors in close analogy to the theory of topological insulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Photonic Floquet Topological Insulators

              The topological insulator is a fundamentally new phase of matter, with the striking property that the conduction of electrons occurs only on its surface, not within the bulk, and that conduction is topologically protected. Topological protection, the total lack of scattering of electron waves by disorder, is perhaps the most fascinating and technologically important aspect of this material: it provides robustness that is otherwise known only for superconductors. However, unlike superconductivity and the quantum Hall effect, which necessitate low temperatures or magnetic fields, the immunity to disorder of topological insulators occurs at room temperature and without any external magnetic field. For this reason, topological protection is predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Recently, a large theoretical effort has been directed towards bringing the concept into the domain of photonics: achieving topological protection of light at optical frequencies. Besides the interesting new physics involved, photonic topological insulators hold the promise for applications in optical isolation and robust photon transport. Here, we theoretically propose and experimentally demonstrate the first photonic topological insulator: a photonic lattice exhibiting topologically protected transport on the lattice edges, without the need for any external field. The system is composed of an array of helical waveguides, evanescently coupled to one another, and arranged in a graphene-like honeycomb lattice. The chirality of the waveguides results in scatter-free, one-way edge states that are topologically protected from scattering.
                Bookmark

                Author and article information

                Journal
                Phys. Rev. Lett.
                Physical review letters
                1079-7114
                0031-9007
                Mar 20 2015
                : 114
                : 11
                Affiliations
                [1 ] Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
                [2 ] Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore.
                Article
                10.1103/PhysRevLett.114.114301
                25839273
                ecf6e414-2978-4a7c-89c9-5c66ef54b540
                History

                Comments

                Comment on this article