12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cinnamic Aldehyde Inhibits Lipopolysaccharide-Induced Chondrocyte Inflammation and Reduces Cartilage Degeneration by Blocking the Nuclear Factor-Kappa B Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA), as one of the top 10 causes of physical disability, is characterized by inflammation of the synovial membrane and progressive destruction of the articular cartilage. Cinnamic aldehyde (CA), an α,β-unsaturated aldehyde extracted from the traditional Chinese herbal medicine cinnamon ( Cinnamomum verum J.Presl), has been reported to have anti-inflammatory, antioxidant, and anticancer properties. However, the anti-inflammatory effect of CA on OA remains unclear. The purpose of the present study was to investigate the effects of CA on inflammation, and cartilage degeneration in OA. A CCK-8 assay was performed to assess the potential toxicity of CA on cultured human OA chondrocytes. Following treatment with lipopolysaccharide (LPS) and CA, the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alfa (TNF-α), was evaluated using quantitative real-time polymerase chain reaction (RT-qPCR) analysis, enzyme-linked immunosorbent assay, and Western blotting (WB). The production of matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) was also examined using RT-qPCR and WB. Furthermore, to investigate the potential anti-inflammatory mechanism of CA, biomarkers of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (p65, IKB-α) were detected using WB. The results demonstrated that CA significantly inhibited the expressions of IL-1β, IL-6, TNF-α, MMP-13, and ADAMTS-5 in LPS-induced OA chondrocytes. CA dramatically suppressed LPS-stimulated NF-κB activation. Collectively, these results suggest that CA treatment may effectively prevent OA.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Physiology and pathophysiology of matrix metalloproteases

          Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn2+ ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the ‘MMP nomenclature’ and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis.

            Osteoarthritis (OA) is a progressive disease of the joints characterized by degradation of articular cartilage. Although disease initiation may be multi-factorial, the cartilage destruction appears to be a result of uncontrolled proteolytic extracellular matrix destruction. A major component of the cartilage extracellular matrix is aggrecan, a proteoglycan that imparts compressive resistance to the tissue. Aggrecanase-mediated aggrecan degradation is a significant event in early stage OA. The relative contribution of individual ADAMTS-4 and ADAMTS-5 proteinases to cartilage destruction during OA has not been resolved completely. This review reveals that both ADAMTS-4/ADAMTS-5 are responsible for aggrecan degradation in a human model of OA, and is expected to list down the rational strategies which are being focussed for therapeutic intervention in OA. Copyright © 2011 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of cytokines in cartilage matrix degeneration in osteoarthritis.

              Chondrocytes are the single cellular component of hyaline cartilage. Under physiologic conditions, they show steady-state equilibrium between anabolic and catabolic activities that maintains the structural and functional integrity of the cartilage extracellular matrix. Implicit in the loss of cartilage matrix that is associated with osteoarthritis is that there is a disturbance in the regulation of synthetic (anabolic) and resorptive (catabolic) activities of the resident chondrocytes that results in a net loss of cartilage matrix components and deterioration in the structural and functional properties of the cartilage. Multiple mechanisms likely are involved in the disturbance of chondrocyte remodeling activities in OA. They include the development of acquired or age-related alterations in chondrocyte function, the effects of excessive mechanical loading, and the presence of dysregulated cytokine activities. Cytokines are soluble or cell-surface molecules that play an essential role in mediating cell-cell interactions. It is possible to classify the cytokines that regulate cartilage remodeling as catabolic, acting on target cells to increase products that enhance matrix degradation; as anticatabolic, tending to inhibit or antagonize the activity of the catabolic cytokines; and as anabolic, acting on chondrocytes to increase synthetic activity. This review will focus on the role of proinflammatory cytokines and their roles in mediating the increased matrix degradation that characterizes the osteoarthritic cartilage lesion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                05 August 2020
                2020
                : 11
                : 949
                Affiliations
                [1] 1 Third Affiliated Hospital, Beijing University of Chinese Medicine , Beijing, China
                [2] 2 Department of Nephrology, Southern Medical University , Guangzhou, China
                [3] 3 Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital , Beijing, China
                Author notes

                Edited by: Luc Pieters, University of Antwerp, Belgium

                Reviewed by: Ting Li, Macau University of Science and Technology, Macau; Wim Vanden Berghe, University of Antwerp, Belgium

                *Correspondence: QingFu Wang, 13910052566@ 123456163.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2020.00949
                7419651
                32848721
                ecf9c4d5-d76d-4440-918d-a5cfd35f4a4b
                Copyright © 2020 Chen, Ruan, Zhou, Huang, Zhang, Ma and Wang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 November 2019
                : 10 June 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 48, Pages: 9, Words: 3796
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                cinnamic aldehyde,knee osteoarthritis,chondrocyte inflammation,chondrocyte degeneration, nf-kb signaling pathway

                Comments

                Comment on this article